• 算法导论Ch8-Ch9


    第八章 线性时间排序

    比较排序算法的下界

    把比较排序的每次比较当做决策树中的每个决策分支。每个结点都是到达排好序时原始输入的下标数组。原始输入N个数有N!种排序。所以决策树至少有N!个结点。

    考虑一棵高度为h,具有l个可达结点的决策树,它对应一个对N个元素所做的比较排序。我们有:

     

    得到:

    所以在最坏情况下,任何比较排序算法都需要做次比较。

    堆排序和归并排序都是渐近最优的比较排序算法。

    计数排序

    计数排序假设n个输入元素的每一个都是在0k区间[0,k]内的一个整数,其中k为某个整数。k=O(n),排序的运行时间为

    #!/usr/bin/env python

    #encoding=utf-8

    import random

    def count_sort(A,B,k):

        C = [0 for i in range(0,k+1)]

        for j in range(0,len(A)):

            C[A[j]] += 1

        for i in range(1,k+1):

            C[i] += C[i-1]

        for j in range(len(A)-1,-1,-1):

            B[C[A[j]]-1] = A[j]

            C[A[j]] += -1

    A = [int(random.random()*10) for i in range(0,100)]

    B = [0 for i in range(0,100)]

    count_sort(A,B,9)

    print(B)

    基数排序

    https://baike.baidu.com/item/%E5%9F%BA%E6%95%B0%E6%8E%92%E5%BA%8F/7875498?fr=aladdin

    从低位到高位排序,高位排序的过程中运用到了低位已经排好的结果。

    #!/usr/bin/env python

    #encoding=utf-8

    import math

    def sort(a, radix=10):

        """a为整数列表, radix为基数"""

        K = int(math.ceil(math.log(max(a), radix))) # K位数可表示任意整数

        bucket = [[] for i in range(radix)] # 不能用 [[]]*radix

        for i in range(1, K+1): # K次循环

            for val in a:

                bucket[int(val%(radix**i)/(radix**(i-1)))].append(val) # 析取整数第K位数字 (从低到高)

            del a[:]

            for each in bucket:

                a.extend(each) # 桶合并

            bucket = [[] for i in range(radix)]

    a = list(range(99,0,-1))

    sort(a,10)

    print(a)

    桶排序

    桶排序:假设输入数据服从均匀分布,平均情况下它的时间代价为O(n)

    #!/usr/bin/env python

    #encoding=utf-8

    import random

    import math

    def insertion_sort(A):

        for j in range(1,len(A),1):

            key = A[j]

            i = j-1

            while i >= 0 and A[i] > key:

                A[i+1] = A[i]

                i = i-1

            A[i+1] = key

    def bucket_sort(A):

        n = len(A)

        B = []

        V = [[] for i in range(0,n)]

        for i in range(0,len(A)):

            V[math.floor(n*A[i])].append(A[i])

        for a in V:

            insertion_sort(a)

        for a in V:

            B.extend(a)

    print(B)

    A = [random.random() for i in range(0,88)]

    print(A)

    bucket_sort(A)

    第九章 中位数和顺序统计量

    输入:一个包含n个数的集合A和一个整数i1<=i<=n.

    输出:元素x属于A,且A中恰好有i-1个其他元素小于它。

    期望为线性时间的选择算法

    和快速排序一样,进行递归划分。

    #!/usr/bin/env python

    # -*- coding:UTF-8 -*-

    def partition(A,p,r):

        x = A[r]

        i = p-1

        for j in range(p,r):

            if A[j]<=x:

                i += 1

                tmp = A[i]

                A[i] = A[j]

                A[j] = tmp

        tmp = A[i+1]

        A[i+1] = A[r]

        A[r] = tmp

        return i + 1

    def quick_sort(A,p,r):

        if p < r:

            q = partition(A,p,r)

            quick_sort(A,p,q-1)

            quick_sort(A,q+1,r)

    def randomized_select(A,p,r,i):

        if p==r:

            return A[p]

        q = partition(A,p,r)

        k= q-p+1

        if i == k:

            return A[q]

        elif i < k:

            return randomized_select(A,p,q-1,i)

        else:

            return randomized_select(A,q+1,r,i-k)

    if  __name__ == '__main__':

    A = [9,3,5,2,3,5,7,8,9,1,11,20,0,2]

    B=A[:]

        print(A)

        quick_sort(A,0,len(A)-1)

        print(A)

        selected = 9

        i = randomized_select(B,0,len(B)-1,selected)

        print(i,A[selected-1])

    最坏情况为线性时间的选择算法

    #!/usr/bin/env python

    # -*- coding:UTF-8 -*-

    import random

    import math

    subLen = 5

    midSub = 2

    def select_insertion_sort(A,start,end):

        for j in range(start+1,end+1,1):

            key = A[j]

            i = j-1

            while i >= start and A[i] > key:

                A[i+1] = A[i]

                i = i-1

            A[i+1] = key

    def select_partition(A,p,r,x):

        i = p

        for j in range(p,r+1):

            if A[j]<=x:

                tmp = A[i]

                A[i] = A[j]

                A[j] = tmp

                i += 1  

        return i-p

    def select(A,start,end,s):

        if end-start+1 <= subLen:

            select_insertion_sort(A,start,end)

            return A[start+s-1]

        c = math.ceil((end-start+1)/subLen)

        B = []

        for i in range(0,c):

            E = (i*start + subLen-1) if (i*start + subLen-1) < (len(A)-1) else (len(A)-1)

            select_insertion_sort(A,start+i*subLen,E)

            midIndex = (start+i*subLen+midSub) if (i < c-1) else int((start+i*subLen+end)/2)

            B.append(A[midIndex])  

        b = select(B,0,len(B)-1,math.ceil(len(B)/2))  

        k = select_partition(A,start,end,b)

        if k == s:

            return b

        elif k > s:

            return select(A,start,start+k-1,s)

        else:

            return select(A,start+k,end,s-k)

    if  __name__ == '__main__':

        A = [int(random.random()*1000) for i in range(0,400)]

        C = A[:]

        A.sort()

        s = 117

        value = select(C,0,len(C)-1,s)

        print(value,A[s-1])

  • 相关阅读:
    云计算大会有感—MapReduce和UDF
    C++对象模型
    oracle中LAG()和LEAD()等分析统计函数的使用方法(统计月增长率)
    .NET MVC学习笔记(一)
    解决mysql控制台查询数据乱码的问题,有图有真相
    java linux 项目常常无故被关闭 进程无故消息
    android点滴之ContentObserver的使用
    GEF-whole-upload教程中遇到的问题及解决方案
    第四届蓝桥杯JavaB组省赛真题
    第四届蓝桥杯JavaA组省赛真题
  • 原文地址:https://www.cnblogs.com/sunnypoem/p/10864080.html
Copyright © 2020-2023  润新知