//-----------------------------------------------------------------------------
// File: bulkloop.c
// Contents: Hooks required to implement USB peripheral function.
//
// $Archive: /USB/Examples/FX2LP/bulkloop/bulkloop.c $
// $Date: 3/23/05 2:55p $
// $Revision: 4 $
//
//
//-----------------------------------------------------------------------------
// Copyright 2003, Cypress Semiconductor Corporation
//-----------------------------------------------------------------------------
#pragma NOIV // Do not generate interrupt vectors
#include "fx2.h" // Contents: EZ-USB FX2/FX2LP/FX1 constants, macros, datatypes, globals, and library function prototypes.
#include "fx2regs.h" // Contents: EZ-USB FX2/FX2LP/FX1 register declarations and bit mask(给寄存器赋值时常用到的bm开头的常量,如后文中的bmCLKSPD) definitions.
#include "syncdly.h" // SYNCDELAY macro 同步延时宏,部分寄存器操作之间需要一定的延时,参考TRM 15.14
extern BOOL GotSUD; // Received setup data flag
extern BOOL Sleep;
extern BOOL Rwuen;
extern BOOL Selfpwr;
BYTE Configuration; // Current configuration
BYTE AlternateSetting; // Alternate settings
#define VR_NAKALL_ON 0xD0
#define VR_NAKALL_OFF 0xD1
//-----------------------------------------------------------------------------
// Task Dispatcher hooks
// The following hooks are called by the task dispatcher.
//-----------------------------------------------------------------------------
void TD_Init(void) // Called once at startup 初始化函数
{
// set the CPU clock to 48MHz
CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ;
// set the slave FIFO interface to 48MHz
IFCONFIG |= 0x40; //详见TRM 221页
// Registers which require a synchronization delay, see TRM section 15.14
// FIFORESET FIFOPINPOLAR
// INPKTEND OUTPKTEND
// EPxBCH:L REVCTL
// GPIFTCB3 GPIFTCB2
// GPIFTCB1 GPIFTCB0
// EPxFIFOPFH:L EPxAUTOINLENH:L
// EPxFIFOCFG EPxGPIFFLGSEL
// PINFLAGSxx EPxFIFOIRQ
// EPxFIFOIE GPIFIRQ
// GPIFIE GPIFADRH:L
// UDMACRCH:L EPxGPIFTRIG
// GPIFTRIG
// Note: The pre-REVE EPxGPIFTCH/L register are affected, as well...
// ...these have been replaced by GPIFTC[B3:B0] registers
// default: all endpoints have their VALID bit set
// default: TYPE1 = 1 and TYPE0 = 0 --> BULK
// default: EP2 and EP4 DIR bits are 0 (OUT direction)
// default: EP6 and EP8 DIR bits are 1 (IN direction)
// default: EP2, EP4, EP6, and EP8 are double buffered
// we are just using the default values, yes this is not necessary... 这些端点的初始化内容,如果和端点描述符中的不相符怎么办?
EP1OUTCFG = 0xA0; //activated、bulk
EP1INCFG = 0xA0; // activated、bulk
SYNCDELAY; // see TRM section 15.14
EP2CFG = 0xA2; //OUT、bulk、512、double
SYNCDELAY;
EP4CFG = 0xA0; //OUT、bulk
SYNCDELAY;
EP6CFG = 0xE2; //IN、bulk、512、double
SYNCDELAY;
EP8CFG = 0xE0; //IN、bulk
// out endpoints do not come up armed
// since the defaults are double buffered we must write dummy byte counts twice
SYNCDELAY;
EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip. 此处的0x80是任意值、无意义值,只是起到arm ep的作用。
SYNCDELAY;
EP2BCL = 0x80;
SYNCDELAY;
EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip.
SYNCDELAY;
EP4BCL = 0x80;
// enable dual autopointer feature 启用自动指针
AUTOPTRSETUP |= 0x01;
}
void TD_Poll(void) // Called repeatedly while the device is idle 重复调度函数
{
WORD i;
WORD count;
if(!(EP2468STAT & bmEP2EMPTY)) //如果EP2's Buffer is full.
{ // check EP2 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty
if(!(EP2468STAT & bmEP6FULL)) //如果EP6's Buffer is empty.
{ // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full
APTR1H = MSB( &EP2FIFOBUF ); //自动指针1H -> EP2's Buffer 地址的高8位?这里有疑问诶,希望看到的高人能给解答一下~
APTR1L = LSB( &EP2FIFOBUF ); //自动指针1L -> EP2's Buffer地址的低8位?
//APT1H 定义同理与AUTOPTR1H、AUTOPTRH1;APT1L 定义同理与AUTOPTR1L、AUTOPTRL1;兼容老版本的例程;在fx2regs.h定义;
AUTOPTRH2 = MSB( &EP6FIFOBUF );
AUTOPTRL2 = LSB( &EP6FIFOBUF );
count = (EP2BCH << 8) + EP2BCL; //求EP2BUF中总共的字节数
// loop EP2OUT buffer data to EP6IN
for( i = 0x0000; i < count; i++ )
{
// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s) //每被访问一次,自动指针都会增加地址
EXTAUTODAT2 = EXTAUTODAT1;
}
EP6BCH = EP2BCH;
SYNCDELAY;
EP6BCL = EP2BCL; // arm EP6IN
SYNCDELAY;
EP2BCL = 0x80; // re(arm) EP2OUT
}
}
if(!(EP2468STAT & bmEP4EMPTY))
{ // check EP4 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty
if(!(EP2468STAT & bmEP8FULL))
{ // check EP8 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full
APTR1H = MSB( &EP4FIFOBUF );
APTR1L = LSB( &EP4FIFOBUF );
AUTOPTRH2 = MSB( &EP8FIFOBUF );
AUTOPTRL2 = LSB( &EP8FIFOBUF );
count = (EP4BCH << 8) + EP4BCL;
// loop EP4OUT buffer data to EP8IN
for( i = 0x0000; i < count; i++ )
{
// setup to transfer EP4OUT buffer to EP8IN buffer using AUTOPOINTER(s)
EXTAUTODAT2 = EXTAUTODAT1;
}
EP8BCH = EP4BCH;
SYNCDELAY;
EP8BCL = EP4BCL; // arm EP8IN
SYNCDELAY;
EP4BCL = 0x80; // re(arm) EP4OUT
}
}
}
BOOL TD_Suspend(void) // Called before the device goes into suspend mode
{
return(TRUE);
}
BOOL TD_Resume(void) // Called after the device resumes
{
return(TRUE);
}
//-----------------------------------------------------------------------------
// Device Request hooks 设备请求函数
// The following hooks are called by the end point 0 device request parser.
//-----------------------------------------------------------------------------
BOOL DR_GetDescriptor(void)
{
return(TRUE);
}
BOOL DR_SetConfiguration(void) // Called when a Set Configuration command is received
{
Configuration = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetConfiguration(void) // Called when a Get Configuration command is received
{
EP0BUF[0] = Configuration;
EP0BCH = 0;
EP0BCL = 1;
return(TRUE); // Handled by user code
}
BOOL DR_SetInterface(void) // Called when a Set Interface command is received
{
AlternateSetting = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetInterface(void) // Called when a Set Interface command is received
{
EP0BUF[0] = AlternateSetting;
EP0BCH = 0;
EP0BCL = 1;
return(TRUE); // Handled by user code
}
BOOL DR_GetStatus(void)
{
return(TRUE);
}
BOOL DR_ClearFeature(void)
{
return(TRUE);
}
BOOL DR_SetFeature(void)
{
return(TRUE);
}
BOOL DR_VendorCmnd(void)
{
BYTE tmp;
switch (SETUPDAT[1])
{
case VR_NAKALL_ON:
tmp = FIFORESET;
tmp |= bmNAKALL;
SYNCDELAY;
FIFORESET = tmp;
break;
case VR_NAKALL_OFF:
tmp = FIFORESET;
tmp &= ~bmNAKALL;
SYNCDELAY;
FIFORESET = tmp;
break;
default:
return(TRUE);
}
return(FALSE);
}
//-----------------------------------------------------------------------------
// USB Interrupt Handlers USB中断函数
// The following functions are called by the USB interrupt jump table.
//-----------------------------------------------------------------------------
// Setup Data Available Interrupt Handler
void ISR_Sudav(void) interrupt 0
{
GotSUD = TRUE; // Set flag
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUDAV; // Clear SUDAV IRQ
}
// Setup Token Interrupt Handler
void ISR_Sutok(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUTOK; // Clear SUTOK IRQ
}
void ISR_Sof(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSOF; // Clear SOF IRQ
}
void ISR_Ures(void) interrupt 0 //这个函数不理解
{
// whenever we get a USB reset, we should revert to full speed mode
pConfigDscr = pFullSpeedConfigDscr;
((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR;
pOtherConfigDscr = pHighSpeedConfigDscr;
((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR;
EZUSB_IRQ_CLEAR();
USBIRQ = bmURES; // Clear URES IRQ
}
void ISR_Susp(void) interrupt 0
{
Sleep = TRUE;
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUSP;
}
void ISR_Highspeed(void) interrupt 0
{
if (EZUSB_HIGHSPEED())
{
pConfigDscr = pHighSpeedConfigDscr;
((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR;
pOtherConfigDscr = pFullSpeedConfigDscr;
((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR;
}
EZUSB_IRQ_CLEAR();
USBIRQ = bmHSGRANT;
}
void ISR_Ep0ack(void) interrupt 0
{
}
void ISR_Stub(void) interrupt 0
{
}
void ISR_Ep0in(void) interrupt 0
{
}
void ISR_Ep0out(void) interrupt 0
{
}
void ISR_Ep1in(void) interrupt 0
{
}
void ISR_Ep1out(void) interrupt 0
{
}
void ISR_Ep2inout(void) interrupt 0
{
}
void ISR_Ep4inout(void) interrupt 0
{
}
void ISR_Ep6inout(void) interrupt 0
{
}
void ISR_Ep8inout(void) interrupt 0
{
}
void ISR_Ibn(void) interrupt 0
{
}
void ISR_Ep0pingnak(void) interrupt 0
{
}
void ISR_Ep1pingnak(void) interrupt 0
{
}
void ISR_Ep2pingnak(void) interrupt 0
{
}
void ISR_Ep4pingnak(void) interrupt 0
{
}
void ISR_Ep6pingnak(void) interrupt 0
{
}
void ISR_Ep8pingnak(void) interrupt 0
{
}
void ISR_Errorlimit(void) interrupt 0
{
}
void ISR_Ep2piderror(void) interrupt 0
{
}
void ISR_Ep4piderror(void) interrupt 0
{
}
void ISR_Ep6piderror(void) interrupt 0
{
}
void ISR_Ep8piderror(void) interrupt 0
{
}
void ISR_Ep2pflag(void) interrupt 0
{
}
void ISR_Ep4pflag(void) interrupt 0
{
}
void ISR_Ep6pflag(void) interrupt 0
{
}
void ISR_Ep8pflag(void) interrupt 0
{
}
void ISR_Ep2eflag(void) interrupt 0
{
}
void ISR_Ep4eflag(void) interrupt 0
{
}
void ISR_Ep6eflag(void) interrupt 0
{
}
void ISR_Ep8eflag(void) interrupt 0
{
}
void ISR_Ep2fflag(void) interrupt 0
{
}
void ISR_Ep4fflag(void) interrupt 0
{
}
void ISR_Ep6fflag(void) interrupt 0
{
}
void ISR_Ep8fflag(void) interrupt 0
{
}
void ISR_GpifComplete(void) interrupt 0
{
}
void ISR_GpifWaveform(void) interrupt 0
{
}