• SqlServer性能优化索引(五)


    导入表结构:

    select * into ProductCategory from AdventureWorksDW2014.dbo.DimProductCategory
    select * into Product from AdventureWorksDW2014.dbo.DimProduct
    

    开启磁盘io:

    set statistics io on
    select EnglishProductName,StandardCost,Color,Size,Weight from Product
    where size>'M'--0.189 io:251
    set statistics io off
    

     

    非聚簇索引:

    创建的语句:
    create nonclustered index nc_product_size on product(size)

     再次执行上面的查询代码(提高了三倍):

    set statistics io on
    select EnglishProductName,StandardCost,Color,Size,Weight from Product
    where size>'M'   --0.054 io:19
    set statistics io off
    

     

    建立覆盖索引:

    create nonclustered index nc_product_size1 on product(size) include(EnglishProductName,
    StandardCost,Color,Weight)
    

    再次执行上述语句:

    set statistics io on
    select EnglishProductName,StandardCost,Color,Size,Weight from Product
    where size>'M'   --0.003 io:2
    set statistics io off
    

     数据库会自动选择索引:

    没有创建索引的情况:

    set statistics io on
    select c.EnglishProductCategoryName,p.EnglishProductName,p.Color,p.Size
    from product as p inner join ProductCategory as c on p.ProductSubcategoryKey=c.ProductCategoryKey
    where c.ProductCategoryKey=1 --0.1928
    set statistics io off
    

     创建索引:

    create nonclustered index nc_productcategory_key on ProductCategory(ProductcategoryKey) include
    (EnglishProductCategoryName)
    

     在次查询:

    set statistics io on
    select c.EnglishProductCategoryName,p.EnglishProductName,p.Color,p.Size
    from product as p inner join ProductCategory as c on p.ProductSubcategoryKey=c.ProductCategoryKey
    where c.ProductCategoryKey=1 --0.1928     io:c 2 p 251
    set statistics io off
    

     IO情况:

    由此可见 Product表影响比较严重 251

    建立一个非聚簇索引:(做一个物理排序)

    create nonclustered index nc_product_categorykey on product(productsubcategorykey) include
    (englishproductname,color,size)
    

     执行语句:

    set statistics io on
    select c.EnglishProductCategoryName,p.EnglishProductName,p.Color,p.Size
    from product as p inner join ProductCategory as c on p.ProductSubcategoryKey=c.ProductCategoryKey
    where c.ProductCategoryKey=1      --4.29 od 1497 oh 783 c 155
    set statistics io off
    

     

    导入三张表:

    select * into Customer from AdventureWorks2014.Sales.Customer
    select * into OrderHeader from AdventureWorks2014.Sales.SalesOrderHeader
    select * into OrderDetail from AdventureWorks2014.Sales.SalesOrderDetail
    

     实现一些业务:

    set statistics io on 
    select c.CustomerID,SUM(od.LineTotal) from OrderDetail as od inner join
     orderheader as oh  on od.SalesOrderID=oh.SalesOrderID  inner join customer as c
     on oh.CustomerID =c.CustomerID group by(c.CustomerID)   --4.29
     set statistics io off  
    

     

    优化的第一步:

      1.查看sql语句写法是否有问题(进行改造)

    set statistics io on
    select oh.CustomerID,sum(od.LineTotal) from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID) --3.77 od 1497 oh 783
    set statistics io off
    

     

    创建索引:

    create nonclustered index nc_OrderDetail_SalesOrderID on OrderDetail(SalesOrderID) include
    (linetotal)
    

     创建另外一个索引:针对group by 的列

    create nonclustered index nc_OrderHeader_CustomerID on OrderHeader(CustomerID)
    

    在次执行上述语句:

    set statistics io on
    select oh.CustomerID,sum(od.LineTotal) from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID) --3.10 od 533 oh 783
    set statistics io off
    

     

    采用索引视图的方式:

    create view v_Order_Total
    as
    select oh.CustomerID,sum(od.LineTotal) as 总额 from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID)
    

     效果差不多:

    set statistics io on
    select * from v_Order_Total --3.10 od 533 oh 783
    set statistics io off
    

     

    修改:

    alter view v_Order_Total
    as
    select oh.CustomerID as 客户ID, sum(od.LineTotal) as 总额 from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID)
    

     对唯一列做聚集索引:

     create clustered index c_vordertotal_customerid on v_order_total(客户ID)
    

     直接运行报错:

    解决方案:

    在次执行:

    alter view v_Order_Total
    with schemabinding 
    as
    select oh.CustomerID as 客户ID, sum(od.LineTotal) as 总额 from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID)
    

     报错:

    解决方法:

    alter view v_Order_Total
    with schemabinding 
    as
    select oh.CustomerID as 客户ID, sum(od.LineTotal) as 总额 from dbo.OrderDetail as od inner join
    dbo.OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID)
    

     在次创建:

     
     create clustered index c_vordertotal_customerid on v_order_total(客户ID)
    

     报错:

    办法:

     create unique clustered index c_vordertotal_customerid on v_order_total(客户ID)
    

     报错:

    方法:

    alter view v_Order_Total
    with schemabinding 
    as
    select oh.CustomerID as 客户ID, sum(od.LineTotal) as 总额,COUNT_BIG(*) as 计数 from dbo.OrderDetail as od inner join
    dbo.OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID)
    

     执行创建索引:

     create unique clustered index c_vordertotal_customerid on v_order_total(客户ID)
    

     成功

    set statistics io on
    select * from v_Order_Total --0.09 io:92
    set statistics io off
    

     执行计划:

     会自动进行值的更新,不用关心

    对语句的访问会用到刚才的架构:

    set statistics io on
    select oh.CustomerID,sum(od.LineTotal) from OrderDetail as od inner join
    OrderHeader as oh on od.SalesOrderID=oh.SalesOrderID group by(oh.CustomerID) --0.09 io:92
    set statistics io off
    
  • 相关阅读:
    [转]Lua中的元表与元方法
    [转]Lua语言基础汇总(7) -- 协同程序
    [转]Lua语言基础汇总(6)-- 迭代器与泛型for
    [转]Lua语言基础汇总(5) -- 闭包
    [转]Lua语言基础汇总(4) -- 函数
    [转]Lua语言基础汇总(3) -- 语句
    [转]Lua语言基础汇总(2) -- 表达式
    [转]Lua语言基础汇总(1) -- 类型与值
    [Cocos2d-x + lua]Label特点总结
    Xenu检测网站死链
  • 原文地址:https://www.cnblogs.com/sunliyuan/p/6231085.html
Copyright © 2020-2023  润新知