• Java 平衡二叉树和AVL


     

      与BST<> 进行对比

    import java.util.ArrayList;
    import java.util.Collections;
    
    public class Main {
    
        public static void main(String[] args) {
    
            System.out.println("Pride and Prejudice");
    
            ArrayList<String> words = new ArrayList<>();
            if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
                System.out.println("Total words: " + words.size());
    
                // Collections.sort(words);
    
                // Test BST
                long startTime = System.nanoTime();
    
                BST<String, Integer> bst = new BST<>();
                for (String word : words) {
                    if (bst.contains(word))
                        bst.set(word, bst.get(word) + 1);
                    else
                        bst.add(word, 1);
                }
    
                for(String word: words)
                    bst.contains(word);
    
                long endTime = System.nanoTime();
    
                double time = (endTime - startTime) / 1000000000.0;
                System.out.println("BST: " + time + " s");
    
    
                // Test AVL Tree
                startTime = System.nanoTime();
    
                AVLTree<String, Integer> avl = new AVLTree<>();
                for (String word : words) {
                    if (avl.contains(word))
                        avl.set(word, avl.get(word) + 1);
                    else
                        avl.add(word, 1);
                }
    
                for(String word: words)
                    avl.contains(word);
    
                endTime = System.nanoTime();
    
                time = (endTime - startTime) / 1000000000.0;
                System.out.println("AVL: " + time + " s");
            }
    
            System.out.println();
        }
    }

    import java.util.ArrayList;
    
    public class AVLTree<K extends Comparable<K>, V> {
    
        private class Node{
            public K key;
            public V value;
            public Node left, right;
            public int height;
    
            public Node(K key, V value){
                this.key = key;
                this.value = value;
                left = null;
                right = null;
                height = 1;
            }
        }
    
        private Node root;
        private int size;
    
        public AVLTree(){
            root = null;
            size = 0;
        }
    
        public int getSize(){
            return size;
        }
    
        public boolean isEmpty(){
            return size == 0;
        }
    
        // 判断该二叉树是否是一棵二分搜索树
        public boolean isBST(){
    
            ArrayList<K> keys = new ArrayList<>();
            inOrder(root, keys);
            for(int i = 1 ; i < keys.size() ; i ++)
                if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
                    return false;
            return true;
        }
    
        private void inOrder(Node node, ArrayList<K> keys){
    
            if(node == null)
                return;
    
            inOrder(node.left, keys);
            keys.add(node.key);
            inOrder(node.right, keys);
        }
    
        // 判断该二叉树是否是一棵平衡二叉树
        public boolean isBalanced(){
            return isBalanced(root);
        }
    
        // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
        private boolean isBalanced(Node node){
    
            if(node == null)
                return true;
    
            int balanceFactor = getBalanceFactor(node);
            if(Math.abs(balanceFactor) > 1)
                return false;
            return isBalanced(node.left) && isBalanced(node.right);
        }
    
        // 获得节点node的高度
        private int getHeight(Node node){
            if(node == null)
                return 0;
            return node.height;
        }
    
        // 获得节点node的平衡因子
        private int getBalanceFactor(Node node){
            if(node == null)
                return 0;
            return getHeight(node.left) - getHeight(node.right);
        }
    
        // 对节点y进行向右旋转操作,返回旋转后新的根节点x
        //        y                              x
        //       /                            /   
        //      x   T4     向右旋转 (y)        z     y
        //     /        - - - - - - - ->    /    / 
        //    z   T3                       T1  T2 T3 T4
        //   / 
        // T1   T2
        private Node rightRotate(Node y) {
            Node x = y.left;
            Node T3 = x.right;
    
            // 向右旋转过程
            x.right = y;
            y.left = T3;
    
            // 更新height
            y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
            x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    
            return x;
        }
    
        // 对节点y进行向左旋转操作,返回旋转后新的根节点x
        //    y                             x
        //  /                            /   
        // T1   x      向左旋转 (y)       y     z
        //     /    - - - - - - - ->   /    / 
        //   T2  z                     T1 T2 T3 T4
        //      / 
        //     T3 T4
        private Node leftRotate(Node y) {
            Node x = y.right;
            Node T2 = x.left;
    
            // 向左旋转过程
            x.left = y;
            y.right = T2;
    
            // 更新height
            y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
            x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    
            return x;
        }
    
        // 向二分搜索树中添加新的元素(key, value)
        public void add(K key, V value){
            root = add(root, key, value);
        }
    
        // 向以node为根的二分搜索树中插入元素(key, value),递归算法
        // 返回插入新节点后二分搜索树的根
        private Node add(Node node, K key, V value){
    
            if(node == null){
                size ++;
                return new Node(key, value);
            }
    
            if(key.compareTo(node.key) < 0)
                node.left = add(node.left, key, value);
            else if(key.compareTo(node.key) > 0)
                node.right = add(node.right, key, value);
            else // key.compareTo(node.key) == 0
                node.value = value;
    
            // 更新height
            node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
    
            // 计算平衡因子
            int balanceFactor = getBalanceFactor(node);
    
            // 平衡维护
            // LL
            if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
                return rightRotate(node);
    
            // RR
            if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
                return leftRotate(node);
    
            // LR
            if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
                node.left = leftRotate(node.left);
                return rightRotate(node);
            }
    
            // RL
            if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
                node.right = rightRotate(node.right);
                return leftRotate(node);
            }
    
            return node;
        }
    
        // 返回以node为根节点的二分搜索树中,key所在的节点
        private Node getNode(Node node, K key){
    
            if(node == null)
                return null;
    
            if(key.equals(node.key))
                return node;
            else if(key.compareTo(node.key) < 0)
                return getNode(node.left, key);
            else // if(key.compareTo(node.key) > 0)
                return getNode(node.right, key);
        }
    
        public boolean contains(K key){
            return getNode(root, key) != null;
        }
    
        public V get(K key){
    
            Node node = getNode(root, key);
            return node == null ? null : node.value;
        }
    
        public void set(K key, V newValue){
            Node node = getNode(root, key);
            if(node == null)
                throw new IllegalArgumentException(key + " doesn't exist!");
    
            node.value = newValue;
        }
    
        // 返回以node为根的二分搜索树的最小值所在的节点
        private Node minimum(Node node){
            if(node.left == null)
                return node;
            return minimum(node.left);
        }
    
        // 从二分搜索树中删除键为key的节点
        public V remove(K key){
    
            Node node = getNode(root, key);
            if(node != null){
                root = remove(root, key);
                return node.value;
            }
            return null;
        }
    
        private Node remove(Node node, K key){
    
            if( node == null )
                return null;
    
            Node retNode;
            if( key.compareTo(node.key) < 0 ){
                node.left = remove(node.left , key);
                // return node;
                retNode = node;
            }
            else if(key.compareTo(node.key) > 0 ){
                node.right = remove(node.right, key);
                // return node;
                retNode = node;
            }
            else{   // key.compareTo(node.key) == 0
    
                // 待删除节点左子树为空的情况
                if(node.left == null){
                    Node rightNode = node.right;
                    node.right = null;
                    size --;
                    // return rightNode;
                    retNode = rightNode;
                }
    
                // 待删除节点右子树为空的情况
                else if(node.right == null){
                    Node leftNode = node.left;
                    node.left = null;
                    size --;
                    // return leftNode;
                    retNode = leftNode;
                }
    
                // 待删除节点左右子树均不为空的情况
                else{
                    // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                    // 用这个节点顶替待删除节点的位置
                    Node successor = minimum(node.right);
                    //successor.right = removeMin(node.right);
                    successor.right = remove(node.right, successor.key);
                    successor.left = node.left;
    
                    node.left = node.right = null;
    
                    // return successor;
                    retNode = successor;
                }
            }
    
            if(retNode == null)
                return null;
    
            // 更新height
            retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
    
            // 计算平衡因子
            int balanceFactor = getBalanceFactor(retNode);
    
            // 平衡维护
            // LL
            if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
                return rightRotate(retNode);
    
            // RR
            if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
                return leftRotate(retNode);
    
            // LR
            if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
                retNode.left = leftRotate(retNode.left);
                return rightRotate(retNode);
            }
    
            // RL
            if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
                retNode.right = rightRotate(retNode.right);
                return leftRotate(retNode);
            }
    
            return retNode;
        }
    
    }
    

      

    public int[] intersect(int[] nums1, int[] nums2) {
    
            AVLTree<Integer, Integer> map = new AVLTree<>();
            for(int num: nums1){
                if(!map.contains(num))
                    map.add(num, 1);
                else
                    map.add(num, map.get(num) + 1);
            }
    
            ArrayList<Integer> res = new ArrayList<>();
            for(int num: nums2){
                if(map.contains(num)){
                    res.add(num);
                    map.add(num, map.get(num) - 1);
                    if(map.get(num) == 0)
                        map.remove(num);
                }
            }
    
            int[] ret = new int[res.size()];
            for(int i = 0 ; i < res.size() ; i ++)
                ret[i] = res.get(i);
    
            return ret;
        }
    

     

    public int uniqueMorseRepresentations(String[] words) {
    
            String[] codes = {".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."};
            AVLTree<String, Object> set = new AVLTree<>();
            for(String word: words){
                StringBuilder res = new StringBuilder();
                for(int i = 0 ; i < word.length() ; i ++)
                    res.append(codes[word.charAt(i) - 'a']);
    
                set.add(res.toString(), null);
            }
    
            return set.getSize();
        }
    

      AvLMap:

    public interface Map<K, V> {
    
        void add(K key, V value);
        boolean contains(K key);
        V get(K key);
        void set(K key, V newValue);
        V remove(K key);
        int getSize();
        boolean isEmpty();
    }
    

      

    public class AVLMap<K extends Comparable<K>, V> implements Map<K, V> {
    
        private AVLTree<K, V> avl;
    
        public AVLMap(){
            avl = new AVLTree<>();
        }
    
        @Override
        public int getSize(){
            return avl.getSize();
        }
    
        @Override
        public boolean isEmpty(){
            return avl.isEmpty();
        }
    
        @Override
        public void add(K key, V value){
            avl.add(key, value);
        }
    
        @Override
        public boolean contains(K key){
            return avl.contains(key);
        }
    
        @Override
        public V get(K key){
            return avl.get(key);
        }
    
        @Override
        public void set(K key, V newValue){
            avl.set(key, newValue);
        }
    
        @Override
        public V remove(K key){
            return avl.remove(key);
        }
    }
    

      

    public interface Set<E> {
    
        void add(E e);
        boolean contains(E e);
        void remove(E e);
        int getSize();
        boolean isEmpty();
    }
    

      

    public class AVLSet<E extends Comparable<E>> implements Set<E> {
    
        private AVLTree<E, Object> avl;
    
        public AVLSet(){
            avl = new AVLTree<>();
        }
    
        @Override
        public int getSize(){
            return avl.getSize();
        }
    
        @Override
        public boolean isEmpty(){
            return avl.isEmpty();
        }
    
        @Override
        public void add(E e){
            avl.add(e, null);
        }
    
        @Override
        public boolean contains(E e){
            return avl.contains(e);
        }
    
        @Override
        public void remove(E e){
            avl.remove(e);
        }
    }
    

      

    public int[] intersection(int[] nums1, int[] nums2) {
    
            AVLSet<Integer> set = new AVLSet<>();
            for(int num: nums1)
                set.add(num);
    
            ArrayList<Integer> list = new ArrayList<>();
            for(int num: nums2){
                if(set.contains(num)){
                    list.add(num);
                    set.remove(num);
                }
            }
    
            int[] res = new int[list.size()];
            for(int i = 0 ; i < list.size() ; i ++)
                res[i] = list.get(i);
            return res;
        }
    

      

    public int[] intersect(int[] nums1, int[] nums2) {
    
            AVLMap<Integer, Integer> map = new AVLMap<>();
            for(int num: nums1){
                if(!map.contains(num))
                    map.add(num, 1);
                else
                    map.add(num, map.get(num) + 1);
            }
    
            ArrayList<Integer> res = new ArrayList<>();
            for(int num: nums2){
                if(map.contains(num)){
                    res.add(num);
                    map.add(num, map.get(num) - 1);
                    if(map.get(num) == 0)
                        map.remove(num);
                }
            }
    
            int[] ret = new int[res.size()];
            for(int i = 0 ; i < res.size() ; i ++)
                ret[i] = res.get(i);
    
            return ret;
        }
    

      

     

  • 相关阅读:
    按钮一色三变化
    最小的k个数-Python版
    字符串的全排列-终于弄明白了
    键值offer-求逆序对
    Python小技巧
    面试题48-动态规划-最长不含重复字符的子字符串,剪绳子
    面试题47-礼物的最大价值(Python版)
    多元高斯分布
    torch_13_ProGan笔记
    pytorch-模型保存与加载自己训练的模型详解 
  • 原文地址:https://www.cnblogs.com/sunliyuan/p/10828251.html
Copyright © 2020-2023  润新知