• 对osgAnimation例子的注释的注释


     
    #include <osg/Notify>
    #include <osg/MatrixTransform>
    #include <osg/PositionAttitudeTransform>
    #include <osg/Geometry>
    #include <osg/Geode>
    
    #include <osgUtil/Optimizer>
    
    #include <osgDB/Registry>
    #include <osgDB/ReadFile>
    
    #include <osgGA/TrackballManipulator>
    #include <osgGA/FlightManipulator>
    #include <osgGA/DriveManipulator>
    
    #include <osgSim/OverlayNode>
    
    #include <osgViewer/Viewer>
    #include <iostream>
    
    // 创建动画路径,参数有中心点,半径,以及循环时间
    osg::AnimationPath* createAnimationPath(const osg::Vec3& center,float radius,double looptime)
    {
        // 实例化动画路径类
        // set up the animation path
        osg::AnimationPath* animationPath = new osg::AnimationPath;
        // 设置动画路径的播放模式,当前使用循环模式(SWING LOOP NO_LOOPING )SWING就是在一个区间内顺逆方向循环,LOOP是顺一个方向循环
        animationPath->setLoopMode(osg::AnimationPath::LOOP);
       
    
        // 分40个阶段 这个意思就是分为四十个控制点,犹如四十条边的多边形,沿着这个路线飞行
        int numSamples = 40;
        float yaw = 0.0f;
        // 偏航的分量,这是一个角度分量,算出来每一个多边形的边对应的角度分量2*PI/(n-1)
        float yaw_delta = 2.0f*osg::PI/((float)numSamples-1.0f);
        // 旋转角度为30度
        float roll = osg::inDegrees(30.0f);
       
        // 时间分量
        double time=0.0f;
        //平均的两个控制点之间的时间
        double time_delta = looptime/(double)numSamples;
        // 将时间控制点与位置坐标插入到动画路径中
        for(int i=0;i<numSamples;++i)
        {
            //这儿是计算出来每个多边形的顶点的坐标,(sinx*r,cosx*r,0.0)是相当于中心点的增量
            osg::Vec3 position(center+osg::Vec3(sinf(yaw)*radius,cosf(yaw)*radius,0.0f));
            //四元数表示方向,表示在3D空间中的旋转方向**四元数很复杂**这个表示,绕x轴旋转roll,y轴旋转-(yaw+90),z轴0
            osg::Quat rotation(osg::Quat(roll,osg::Vec3(0.0,1.0,0.0))*osg::Quat(-(yaw+osg::inDegrees(90.0f)),osg::Vec3(0.0,0.0,1.0)));
           
            //和flash动画类似,控制点有位置和转动角度,这样控制点之间是均匀运动
            animationPath->insert(time,osg::AnimationPath::ControlPoint(position,rotation));
    
            //递增yaw和time
            yaw += yaw_delta;
            time += time_delta;
    
        }
        return animationPath;   
    }
    
    
    // 创建底板,中心点位置在center,半径为radius
    osg::Node* createBase(const osg::Vec3& center,float radius)
    {
    
        // 一个10x10的底板
        int numTilesX = 10;
        int numTilesY = 10;
       
        // 长度与宽度的尺寸
        float width = 2*radius;
        float height = 2*radius;
       
        // 计算初始位置与x、y的分量
        osg::Vec3 v000(center - osg::Vec3(width*0.5f,height*0.5f,0.0f));
        osg::Vec3 dx(osg::Vec3(width/((float)numTilesX),0.0,0.0f));
        osg::Vec3 dy(osg::Vec3(0.0f,height/((float)numTilesY),0.0f));
       
        // 计算每个小格子的顶点坐标并压入数组中
        // fill in vertices for grid, note numTilesX+1 * numTilesY+1...
        osg::Vec3Array* coords = new osg::Vec3Array;
        int iy;
        for(iy=0;iy<=numTilesY;++iy)
        {
            for(int ix=0;ix<=numTilesX;++ix)
            {
                coords->push_back(v000+dx*(float)ix+dy*(float)iy);
            }
        }
       
        // 设置颜色的数组,当前为黑白色两种颜色
        //Just two colours - black and white.
        osg::Vec4Array* colors = new osg::Vec4Array;
        colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); // white
        colors->push_back(osg::Vec4(0.0f,0.0f,0.0f,1.0f)); // black
        int numColors=colors->size();
       
        // 设置绘制四边形的顶点索引与每个四边形的颜色
        int numIndicesPerRow=numTilesX+1;
        osg::UByteArray* coordIndices = new osg::UByteArray; // assumes we are using less than 256 points...
        osg::UByteArray* colorIndices = new osg::UByteArray;
        for(iy=0;iy<numTilesY;++iy)
        {
            for(int ix=0;ix<numTilesX;++ix)
            {
                // four vertices per quad.
                coordIndices->push_back(ix    +(iy+1)*numIndicesPerRow);
                coordIndices->push_back(ix    +iy*numIndicesPerRow);
                coordIndices->push_back((ix+1)+iy*numIndicesPerRow);
                coordIndices->push_back((ix+1)+(iy+1)*numIndicesPerRow);
               
                // one color per quad
                colorIndices->push_back((ix+iy)%numColors);
            }
        }
       
    
        // 设置法线向量
        // set up a single normal
        osg::Vec3Array* normals = new osg::Vec3Array;
        normals->push_back(osg::Vec3(0.0f,0.0f,1.0f));
       
    
        // 设置顶点坐标数组
        osg::Geometry* geom = new osg::Geometry;
        geom->setVertexArray(coords);
        geom->setVertexIndices(coordIndices);
       
        // 设置颜色数组
        geom->setColorArray(colors);
        geom->setColorIndices(colorIndices);
        geom->setColorBinding(osg::Geometry::BIND_PER_PRIMITIVE);
       
        // 设置法线数组
        geom->setNormalArray(normals);
        geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
       
        // 需要绘制什么形状的图形,当前为四边形
        geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coordIndices->size()));
       
        // 将绘制的的图形添加到osg::Geode中
        osg::Geode* geode = new osg::Geode;
        geode->addDrawable(geom);
       
        return geode;
    }
    
    // 创建移动的模型,中心点在center,半径为radius
    osg::Node* createMovingModel(const osg::Vec3& center, float radius)
    {
        float animationLength = 10.0f;
    
        // 创建动画路径,中心点在center,半径为radius,循环时间为10.0f
        osg::AnimationPath* animationPath = createAnimationPath(center,radius,animationLength);
    
        osg::Group* model = new osg::Group;
    
        // 从外部读取一个模型glider.osg作为飞行的模型
        osg::Node* glider = osgDB::readNodeFile("glider.osg");
        if (glider)
        {
            // 根据模型的包围球来计算矩阵
            // 平移到原点,缩放模型,然后沿z轴旋转-90度
            const osg::BoundingSphere& bs = glider->getBound();
    
            float size = radius/bs.radius()*0.3f;
            osg::MatrixTransform* positioned = new osg::MatrixTransform;
            //设置这个值在对象生命周期内为静态的不可改变的数值,或者动态的在对象生命周期内变化的值
            positioned->setDataVariance(osg::Object::STATIC);
            //设置转移矩阵参数
            positioned->setMatrix(osg::Matrix::translate(-bs.center())*         /*表示平移物体,注意osg的坐标系是z轴是向上的*/
                                         osg::Matrix::scale(size,size,size)*    /*x,y,z轴的放缩比例*/
                                         osg::Matrix::rotate(osg::inDegrees(-90.0f),0.0f,0.0f,1.0f));   /*x,y,z轴的旋转角度*/
       
            positioned->addChild(glider);
       
            // 设置动画路径的回调函数,使在渲染循环中不停的沿动画路径移动,设置坐标系变换
            osg::PositionAttitudeTransform* xform = new osg::PositionAttitudeTransform;   
            xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0,1.0));
            xform->addChild(positioned);
    
            model->addChild(xform);
        }
    
        // 从外部读取一个模型cessna.osg
        // 操作同上,设置动画路径的回调函数,使在渲染的循环中不停的沿动画路径移动
        osg::Node* cessna = osgDB::readNodeFile("cessna.osg");
        if (cessna)
        {
            const osg::BoundingSphere& bs = cessna->getBound();
    
            float size = radius/bs.radius()*0.3f;
            osg::MatrixTransform* positioned = new osg::MatrixTransform;
            positioned->setDataVariance(osg::Object::STATIC);
            positioned->setMatrix(osg::Matrix::translate(-bs.center())*
                                         osg::Matrix::scale(size,size,size)*
                                         osg::Matrix::rotate(osg::inDegrees(180.0f),0.0f,0.0f,1.0f));
       
            positioned->addChild(cessna);
       
            osg::MatrixTransform* xform = new osg::MatrixTransform;
            xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0f,2.0));
            xform->addChild(positioned);
    
            model->addChild(xform);
        }
       
        return model;
    }
    
    // 创建覆盖图,根据覆盖的实现技术来设置
    osg::Node* createModel(bool overlay, osgSim::OverlayNode::OverlayTechnique technique)
    {
        osg::Vec3 center(0.0f,0.0f,0.0f);
        float radius = 100.0f;
    
        osg::Group* root = new osg::Group;
    
        // 创建底板与飞行的模型
        float baseHeight = center.z()-radius*0.5;
        osg::Node* baseModel = createBase(osg::Vec3(center.x(), center.y(), baseHeight),radius);
        osg::Node* movingModel = createMovingModel(center,radius*0.8f);
    
        // 是否设置覆盖图
        if (overlay)
        {
            // 根据命令行传入的参数来设置
            osgSim::OverlayNode* overlayNode = new osgSim::OverlayNode(technique);
            overlayNode->setContinuousUpdate(true);
            // 需要设置的覆盖的图的模型为飞行的模型,当前为从外部加载的模型
            overlayNode->setOverlaySubgraph(movingModel);
            // 设置覆盖图距离底板的高度
            overlayNode->setOverlayBaseHeight(baseHeight-0.01);
            overlayNode->addChild(baseModel);
            // 将覆盖图的节点加入到根节点中
            root->addChild(overlayNode);
        }
        else
        {
            // 不设置覆盖图
            root->addChild(baseModel);
        }
       
        root->addChild(movingModel);
    
        return root;
    }
    
    
    int main( int argc, char **argv )
    {
        // 是否使用覆盖模拟
        bool overlay = false;
        // 使用命令行参数实例化osg::ArgumentParset类,方便以后的操作
        osg::ArgumentParser arguments(&argc,argv);
        while (arguments.read("--overlay")) overlay = true;
       
        // 获得覆盖节点采用哪种技术实现,提供三种实现技术
        osgSim::OverlayNode::OverlayTechnique technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY;
        while (arguments.read("--object")) { technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; }
        while (arguments.read("--ortho") || arguments.read("--orthographic")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; }
        while (arguments.read("--persp") || arguments.read("--perspective")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_PERSPECTIVE_OVERLAY; overlay=true; }
       
    
        // initialize the viewer.
        osgViewer::Viewer viewer;
    
        // 创建底板与飞行的物体,飞行物体通过外部读取
        // load the nodes from the commandline arguments.
        osg::Node* model = createModel(overlay, technique);
        if (!model)
        {
            return 1;
        }
       
        // 创建一个osg::MatrixTransform并设置场景沿x轴旋转30度
        // tilt the scene so the default eye position is looking down on the model.
        osg::MatrixTransform* rootnode = new osg::MatrixTransform;
        rootnode->setMatrix(osg::Matrix::rotate(osg::inDegrees(30.0f),1.0f,0.0f,0.0f));
        rootnode->addChild(model);
    
        /// 对整个场景进行优化
        // run optimization over the scene graph
        osgUtil::Optimizer optimzer;
        optimzer.optimize(rootnode);
        
        // 将整个节点设置到场景中进行渲染
        // set the scene to render
        viewer.setSceneData(rootnode);
    
        // 设置相机的操作器,当前使用跟踪球的模式进行操作
        viewer.setCameraManipulator(new osgGA::TrackballManipulator());
    
        // viewer.setUpViewOnSingleScreen(1);
    
        // 提供两中渲染的循环模式
        // 第一中采用老式的模式
        // 第二中采用封装模式
    #if 0
    
        // use of custom simulation time.
       
        viewer.realize();
       
        double simulationTime = 0.0;
       
        while (!viewer.done())
        {
            viewer.frame(simulationTime);
            simulationTime += 0.001;
        }
       
        return 0;
    #else
    
        // normal viewer usage.
        return viewer.run();
    
    #endif
    }
  • 相关阅读:
    码云的安装和配置
    Python解释器安装教程和环境变量配置
    Python基础学习
    buuctf CheckIn
    各种小马收集
    buuctf Easysql 小记
    locust
    封装好的日志模块
    实用的测试网站
    列表操作
  • 原文地址:https://www.cnblogs.com/sunliming/p/2284995.html
Copyright © 2020-2023  润新知