• GRU-CTC中文语音识别



    该项目github地址

    基于keras的中文语音识别

    • 该项目实现了GRU-CTC中文语音识别,所有代码都在gru_ctc_am.py中,包括:
      • 音频文件特征提取
      • 文本数据处理
      • 数据格式处理
      • 构建模型
      • 模型训练及解码
    • 之外还包括将aishell数据处理为thchs30数据格式,合并数据进行训练。代码及数据放在gen_aishell_data中。

    默认数据集为thchs30,参考gen_aishell_data中的数据及代码,也可以使用aishell的数据进行训练。

    音频文件特征提取

    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		[audio]对音频文件进行处理,包括生成总的文件列表、特征提取等
    '''
    # -----------------------------------------------------------------------------------------------------
    # 生成音频列表
    def genwavlist(wavpath):
    	wavfiles = {}
    	fileids = []
    	for (dirpath, dirnames, filenames) in os.walk(wavpath):
    		for filename in filenames:
    			if filename.endswith('.wav'):
    				filepath = os.sep.join([dirpath, filename])
    				fileid = filename.strip('.wav')
    				wavfiles[fileid] = filepath
    				fileids.append(fileid)
    	return wavfiles,fileids
    
    # 对音频文件提取mfcc特征
    def compute_mfcc(file):
    	fs, audio = wav.read(file)
    	mfcc_feat = mfcc(audio, samplerate=fs, numcep=26)
    	mfcc_feat = mfcc_feat[::3]
    	mfcc_feat = np.transpose(mfcc_feat)  
    	mfcc_feat = pad_sequences(mfcc_feat, maxlen=500, dtype='float', padding='post', truncating='post').T
    	return mfcc_feat
    

    文本数据处理

    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		[text]对文本标注文件进行处理,包括生成拼音到数字的映射,以及将拼音标注转化为数字的标注转化
    '''
    # -----------------------------------------------------------------------------------------------------
    # 利用训练数据生成词典
    def gendict(textfile_path):
    	dicts = []
    	textfile = open(textfile_path,'r+')
    	for content in textfile.readlines():
    		content = content.strip('
    ')
    		content = content.split(' ',1)[1]
    		content = content.split(' ')
    		dicts += (word for word in content)
    	counter = Counter(dicts)
    	words = sorted(counter)
    	wordsize = len(words)
    	word2num = dict(zip(words, range(wordsize)))
    	num2word = dict(zip(range(wordsize), words))
    	return word2num, num2word #1176个音素
    
    # 文本转化为数字
    def text2num(textfile_path):
    	lexcion,num2word = gendict(textfile_path)
    	word2num = lambda word:lexcion.get(word, 0)
    	textfile = open(textfile_path, 'r+')
    	content_dict = {}
    	for content in textfile.readlines():
    		content = content.strip('
    ')
    		cont_id = content.split(' ',1)[0]
    		content = content.split(' ',1)[1]
    		content = content.split(' ')
    		content = list(map(word2num,content))
    		add_num = list(np.zeros(50-len(content)))
    		content = content + add_num
    		content_dict[cont_id] = content
    	return content_dict,lexcion
    

    数据格式处理

    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		[data]数据生成器构造,用于训练的数据生成,包括输入特征及标注的生成,以及将数据转化为特定格式
    '''
    # -----------------------------------------------------------------------------------------------------
    # 将数据格式整理为能够被网络所接受的格式,被data_generator调用
    def get_batch(x, y, train=False, max_pred_len=50, input_length=500):
        X = np.expand_dims(x, axis=3)
        X = x # for model2
    #     labels = np.ones((y.shape[0], max_pred_len)) *  -1 # 3 # , dtype=np.uint8
        labels = y
        input_length = np.ones([x.shape[0], 1]) * ( input_length - 2 )
    #     label_length = np.ones([y.shape[0], 1])
        label_length = np.sum(labels > 0, axis=1)
        label_length = np.expand_dims(label_length,1)
        inputs = {'the_input': X,
                  'the_labels': labels,
                  'input_length': input_length,
                  'label_length': label_length,
                  }
        outputs = {'ctc': np.zeros([x.shape[0]])}  # dummy data for dummy loss function
        return (inputs, outputs)
    
    # 数据生成器,默认音频为thchs30	rain,默认标注为thchs30	rain.syllable,被模型训练方法fit_generator调用
    def data_generate(wavpath = 'E:\Data\data_thchs30\train', textfile = 'E:\Data\thchs30\train.syllable.txt', bath_size=4):
    	wavdict,fileids = genwavlist(wavpath)
    	#print(wavdict)
    	content_dict,lexcion = text2num(textfile)
    	genloop = len(fileids)//bath_size
    	print("all loop :", genloop)
    	while True:
    		feats = []
    		labels = []
    		# 随机选择某个音频文件作为训练数据
    		i = random.randint(0,genloop-1)
    		for x in range(bath_size):
    			num = i * bath_size + x
    			fileid = fileids[num]
    			# 提取音频文件的特征
    			mfcc_feat = compute_mfcc(wavdict[fileid])
    			feats.append(mfcc_feat)
    			# 提取标注对应的label值
    			labels.append(content_dict[fileid])
    		# 将数据格式修改为get_batch可以处理的格式
    		feats = np.array(feats)
    		labels = np.array(labels)
    		# 调用get_batch将数据处理为训练所需的格式
    		inputs, outputs = get_batch(feats, labels)
    		yield inputs, outputs
    

    构建模型

    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		[net model]构件网络结构,用于最终的训练和识别
    '''
    # -----------------------------------------------------------------------------------------------------
    # 被creatModel调用,用作ctc损失的计算
    def ctc_lambda(args):
    	labels, y_pred, input_length, label_length = args
    	y_pred = y_pred[:, :, :]
    	return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
    
    # 构建网络结构,用于模型的训练和识别
    def creatModel():
    	input_data = Input(name='the_input', shape=(500, 26))
    	layer_h1 = Dense(512, activation="relu", use_bias=True, kernel_initializer='he_normal')(input_data)
    	#layer_h1 = Dropout(0.3)(layer_h1)
    	layer_h2 = Dense(512, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h1)
    	layer_h3_1 = GRU(512, return_sequences=True, kernel_initializer='he_normal', dropout=0.3)(layer_h2)
    	layer_h3_2 = GRU(512, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', dropout=0.3)(layer_h2)
    	layer_h3 = add([layer_h3_1, layer_h3_2])
    	layer_h4 = Dense(512, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h3)
    	#layer_h4 = Dropout(0.3)(layer_h4)
    	layer_h5 = Dense(1177, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h4)
    	output = Activation('softmax', name='Activation0')(layer_h5)
    	model_data = Model(inputs=input_data, outputs=output)
    	#ctc
    	labels = Input(name='the_labels', shape=[50], dtype='float32')
    	input_length = Input(name='input_length', shape=[1], dtype='int64')
    	label_length = Input(name='label_length', shape=[1], dtype='int64')
    	loss_out = Lambda(ctc_lambda, output_shape=(1,), name='ctc')([labels, output, input_length, label_length])
    	model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
    	model.summary()
    	ada_d = Adadelta(lr=0.01, rho=0.95, epsilon=1e-06)
    	#model=multi_gpu_model(model,gpus=2)
    	model.compile(loss={'ctc': lambda y_true, output: output}, optimizer=ada_d)
    	#test_func = K.function([input_data], [output])
    	print("model compiled successful!")
    	return model, model_data
    

    模型训练及解码

    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		模型的解码,用于将数字信息映射为拼音
    '''
    # -----------------------------------------------------------------------------------------------------
    # 对model预测出的softmax的矩阵,使用ctc的准则解码,然后通过字典num2word转为文字
    def decode_ctc(num_result, num2word):
    	result = num_result[:, :, :]
    	in_len = np.zeros((1), dtype = np.int32)
    	in_len[0] = 50;
    	r = K.ctc_decode(result, in_len, greedy = True, beam_width=1, top_paths=1)
    	r1 = K.get_value(r[0][0])
    	r1 = r1[0]
    	text = []
    	for i in r1:
    		text.append(num2word[i])
    	return r1, text
    
    
    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		模型的训练
    '''
    # -----------------------------------------------------------------------------------------------------
    # 训练模型
    def train():
    	# 准备训练所需数据
    	yielddatas = data_generate()
    	# 导入模型结构,训练模型,保存模型参数
    	model, model_data = creatModel()
    	model.fit_generator(yielddatas, steps_per_epoch=2000, epochs=1)
    	model.save_weights('model.mdl')
    	model_data.save_weights('model_data.mdl')
    
    
    # -----------------------------------------------------------------------------------------------------
    '''
    &usage:		模型的测试,看识别结果是否正确
    '''
    # -----------------------------------------------------------------------------------------------------
    # 测试模型
    def test():
    	# 准备测试数据,以及生成字典
    	word2num, num2word = gendict('E:\Data\thchs30\train.syllable.txt')
    	yielddatas = data_generate(bath_size=1)
    	# 载入训练好的模型,并进行识别
    	model, model_data = creatModel()
    	model_data.load_weights('model_data.mdl')
    	result = model_data.predict_generator(yielddatas, steps=1)
    	# 将数字结果转化为文本结果
    	result, text = decode_ctc(result, num2word)
    	print('数字结果: ', result)
    	print('文本结果:', text)
    

    aishell数据转化

    将aishell中的汉字标注转化为拼音标注,利用该数据与thchs30数据训练同样的网络结构。

    该模型作为一个练手小项目。
    没有使用语言模型,直接简单建模。

    我的github: https://github.com/audier

  • 相关阅读:
    Codeforces 631D Messenger KMP
    Google Codejam 2016 Round1A Problem C BFFs 简单图论
    ACM常用数论知识 总结
    C++ 虚函数表
    HDU 5661 Claris and XOR 贪心
    2013亚洲区域赛长沙站 ZOJ 3732 Graph Reconstruction
    [C++] upper_bound和lower_bound
    2015合肥网络赛 HDU 5489 Removed Interval LIS+线段树(树状数组)
    hdu 3532 Max Angle(atan2的使用)
    poj 1106 Transmitters (计算几何,叉积||极角排序)
  • 原文地址:https://www.cnblogs.com/sunhongwen/p/9527219.html
Copyright © 2020-2023  润新知