首先TensorFlow是Google开源的第二代用于数字计算的软件库,概括地说,TensorFlow可以理解为一个深度学习框架,里面有完整的数据流向和处理机制,同时还封装了大量高效可用的算法和构建神经网络的函数
TensorFlows是人工智能AI领域的一个重要软件工具,是谷歌开发的开源软件(即免费的)。 人工智能领域分为三个方面,即基础层、技术层和应用层;而TensorFlow就是技术层中的学习框架。所谓学习框架,你可以用它来处理大量数据,快速建立数学模型,这些模型可以完成智能功能,例如自动识别一个图片里面的人物是否是范冰冰,当你百度范冰冰时,这个模型就可以识别并呈现范冰冰的图片;TensorFlow就好像一个功能强大的机床,它可以帮助制造出不同的产品(即数学模型)。
1.用户向TensorFlow(简称TF))输入搭建模型所需的信息,并转化为可处理数据 。TF可以处理图片/视频/音频等信息。例如:用户导入1万张人物图片,并通过TF将不同尺寸图片统一裁剪为24x24像素大小。
2.搭建模型。 TF提供很多的函数模块,在搭建模型过程中,用户可以调用这些函数。例如gradient descent梯度下降函数来求解模型的参数;如交叉熵损失loss()函数来判断模型是否最优。
TF核心程序由2个独立部分组成: a:Building the computational graph构建计算图; b:Running the computational graph运行计算图。例如简单计算a+b, 对应的计算图如下。 对应的程序代码是:a = tf.placeholder(tf.float32),b = tf.placeholder(tf.float32),adder_node = a + b 。