• SICP学习笔记 第一章 (1.2)


    递归计算过程recursive process):这种类型的计算过程由一个推迟执行的运算链条刻画。

    迭代计算过程iterative process):其状态可以用固定数目的状态变量描述。与此同时,又存在一套固定规则,描述了计算过程从一个状态到下一个状态转换时,变量的更新方式,还有一个结束检测,描述计算过程应该终止的条件。

    范例:换零钱

     1 (define (count-change amount)
     2     (cc amount 5))
     3 (define (cc amount kinds-of-coins)
     4     (cond ((= amount 0) 1)
     5            ((or (< amount 0) (= kinds-of-coins 0)) 0)
     6            (else (+ (cc amount
     7                         (- kinds-of-coins 1))
     8                     (cc (- amount
     9                            (first-denomination kinds-of-coins))
    10                         kinds-of-coins)))))
    11 (define (first-denomination kinds-of-coins)
    12     (cond ((= kinds-of-coins 1) 1)
    13            (= kinds-of-coins 2) 5)
    14            (= kinds-of-coins 3) 10)
    15            (= kinds-of-coins 4) 25)
    16            (= kinds-of-coins 5) 50)))

    部分习题:

    exercise 1.9

     1 (+ 4 5)
     2 (inc (+ 3 5))
     3 (inc (inc (+ 2 5)))
     4 (inc (inc (inc (+ 1 5))))
     5 (inc (inc (inc (inc (+ 0 5)))))
     6 (inc (inc (inc (inc 5))))
     7 (inc (inc (inc 6)))
     8 (inc (inc 7))
     9 (inc 8)
    10 9
    11 
    12 (+ 4 5)
    13 (+ 3 6)
    14 (+ 2 7)
    15 (+ 1 8)
    16 (+ 0 9)
    17 9

    exercise 1.11

     1 ;recursive process
     2 (define (f n)
     3     (if (< n 3)
     4     n
     5     (+ (f (- n 1))
     6        (* 2
     7           (f (- n 2)))
     8        (* 3
     9           (f (- n 3))))))
    10 
    11 ;iterative process
    12 (define (f n)
    13     (define (f-iter a b c n)
    14         (if (= n 0)
    15         a
    16         (f-iter b
    17                 c
    18                 (+ (* 3 a)
    19                    (* 2 b)
    20                    c)
    21                 (- n 1)))
    22     (f-iter 0 1 2 n))

     exercise 1.12

    需要输入两个参数,代表第几行第几个元素,索引从0开始,则第一个元素表示为 (pascal 0 0)。

    1 (define (pascal row col)
    2     (cond ((= col 0) 1)
    3           ((= col row) 1)
    4           ((> col row) (display "col can't larger then row"))    
    5           (else (+ (pascal (- row 1)
    6                            (- col 1))
    7                    (pascal (- row 1)
    8                            col)))))

     exercise 1.15

    a) p将被使用5次,代换模型如下。

    1 (sine 12.15)
    2 (p (sine 4.05))
    3 (p (p (sine 1.35)))
    4 (p (p (p (sine 0.45))))
    5 (p (p (p (p (sine 0.15)))))
    6 (p (p (p (p (p (sine 0.05))))))

     exercise 1.16

     1 (define (fast-expt b n)
     2     (define (fast-expt-iter b n a)
     3          (cond ((= n 0) a)
     4                ((even? n) (fast-expt-iter (square b)
     5                                           (/ n 2)
     6                                           a))
     7                (else (fast-expt-iter b
     8                                      (- n 1)
     9                                      (* a b)))))
    10     (fast-expt-iter b n 1))

     exercise 1.17

    1 (define (double x)
    2     (+ x x))
    3 (define (halve x)
    4     (/ x 2))
    5 (define (fast-multi a b)
    6     (cond ((= b 0) 0)
    7           ((even? b) (fast-multi (double a) (halve b)))
    8           (else (+ a (fast-multi a (- b 1))))))

     exercise 1.18

     1 (define (double x)
     2     (+ x x))
     3 (define (halve x)
     4     (/ x 2))
     5 (define (fast-multi a b)
     6     (define (fast-multi-iter a b product)
     7         (cond ((= b 0) product)
     8               ((even? b) (fast-multi-iter (double a) (halve b) product))
     9               (else (fast-multi-iter a (- b 1) (+ a product)))))
    10     (fast-multi-iter a b 0))

     exercise 1.19

     1 (define (fib n)
     2     (fib-iter 1 0 0 1 n))
     3 (define (fib-iter a b p q count)
     4     (cond ((= count 0) b)
     5           ((even? count) (fib-iter a 
     6                                    b
     7                                    (+ (square p) (square q))
     8                                    (+ (* 2 p q) (square q))
     9                                    (/ count 2)))
    10           (else (fib-iter (+ (* b q) (* a q) (* a p))
    11                           (+ (* b p) (* a q))
    12                           p
    13                           q
    14                           (- count 1)))))

      exercise 1.20

     1 ;normal order evaluate
     2 (gcd 206 40)
     3 (if (= 40 0)
     4     206
     5     (gcd 40 (remainder 206 40)))
     6 (gcd 40 (remainder 206 40))
     7 (if (= (remainder 206 40) 0)
     8     40
     9     (gcd (remainder 206 40) (remainder 40 (remainder 206 40))))
    10 ......
    11 
    12 
    13 ;application order evaluate
    14 (gcd 206 40)
    15 (gcd 40 6)
    16 (gcd 6 4)
    17 (gcd 4 2)
    18 (gcd 2 0)
    19 2
  • 相关阅读:
    【Java】国内maven私服
    【密码学】常见证书格式及相互转换
    【密码学】数字证书原理
    【Java】Java与数字证书
    【Java】在eclipse中使用maven进行项目构建 入门篇
    【Java】在eclipse中使用gradle进行项目构建 入门篇
    Practice encryptedblobstore
    47、[源码]-Spring容器创建-初始化MessageSource
    46、[源码]-Spring容器创建-注册BeanPostProcessors
    45、[源码]-Spring容器创建-执行BeanFactoryPostProcessor
  • 原文地址:https://www.cnblogs.com/sungoshawk/p/2746107.html
Copyright © 2020-2023  润新知