• Elasticsearch学习之快速入门案例


    1. document数据格式

    面向文档的搜索分析引擎

    (1)应用系统的数据结构都是面向对象的,复杂的
    (2)对象数据存储到数据库中,只能拆解开来,变为扁平的多张表,每次查询的时候还得还原回对象格式,相当麻烦
    (3)ES是面向文档的,文档中存储的数据结构,与面向对象的数据结构是一样的,基于这种文档数据结构,es可以提供复杂的索引,全文检索,分析聚合等功能
    (4)es的document用json数据格式来表达

     1 public class Employee {
     2 
     3   private String email;
     4   private String firstName;
     5   private String lastName;
     6   private EmployeeInfo info;
     7   private Date joinDate;
     8 
     9 }
    10 
    11 private class EmployeeInfo {
    12   
    13   private String bio; // 性格
    14   private Integer age;
    15   private String[] interests; // 兴趣爱好
    16 
    17 }
    18 
    19 EmployeeInfo info = new EmployeeInfo();
    20 info.setBio("curious and modest");
    21 info.setAge(30);
    22 info.setInterests(new String[]{"bike", "climb"});
    23 
    24 Employee employee = new Employee();
    25 employee.setEmail("zhangsan@sina.com");
    26 employee.setFirstName("san");
    27 employee.setLastName("zhang");
    28 employee.setInfo(info);
    29 employee.setJoinDate(new Date());
    30 
    31 employee对象:里面包含了Employee类自己的属性,还有一个EmployeeInfo对象

    两张表:employee表,employee_info表,将employee对象的数据重新拆开来,变成Employee数据和EmployeeInfo数据
    employee表:email,first_name,last_name,join_date,4个字段
    employee_info表:bio,age,interests,3个字段;此外还有一个外键字段,比如employee_id,关联着employee表

    {
        "email":      "zhangsan@sina.com",
        "first_name": "san",
        "last_name": "zhang",
        "info": {
            "bio":         "curious and modest",
            "age":         30,
            "interests": [ "bike", "climb" ]
        },
        "join_date": "2017/01/01"
    }

    我们就明白了es的document数据格式和数据库的关系型数据格式的区别

    2. 电商网站商品管理案例

    有一个电商网站,需要为其基于ES构建一个后台系统,提供以下功能:

    (1)对商品信息进行CRUD(增删改查)操作
    (2)执行简单的结构化查询
    (3)可以执行简单的全文检索,以及复杂的phrase(短语)检索
    (4)对于全文检索的结果,可以进行高亮显示
    (5)对数据进行简单的聚合分析

    3. 简单的集群管理

    (1)快速检查集群的健康状况

    es提供了一套api,叫做cat api,可以查看es中各种各样的数据

    GET /_cat/health?v
    
    epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488006741 15:12:21  elasticsearch yellow          1         1      1   1    0    0        1             0                  -                 50.0%
    
    epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488007113 15:18:33  elasticsearch green           2         2      2   1    0    0        0             0                  -                100.0%
    
    epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488007216 15:20:16  elasticsearch yellow          1         1      1   1    0    0        1             0                  -                 50.0%

    如何快速了解集群的健康状况?green、yellow、red?

      green:每个索引的primary shard和replica shard都是active状态的
      yellow:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态
      red:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了

    为什么现在会处于一个yellow状态?

      我们现在就一个笔记本电脑,就启动了一个es进程,相当于就只有一个node。现在es中有一个index,就是kibana自己内置建立的index。由于默认的配置是给每个index分配5个primary shard和5个replica shard,而且primary shard和replica shard不能在同一台机器上(为了容错)。现在kibana自己建立的index是1个primary shard和1个replica shard。当前就一个node,所以只有1个primary shard被分配了和启动了,但是一个replica shard没有第二台机器去启动。做一个小实验:此时只要启动第二个es进程,就会在es集群中有2个node,然后那1个replica shard就会自动分配过去,然后cluster status就会变成green状态。

    (2)快速查看集群中有哪些索引

    GET /_cat/indices?v
    
    health status index   uuid                   pri rep docs.count docs.deleted store.size pri.store.size
    yellow open   .kibana rUm9n9wMRQCCrRDEhqneBg   1   1          1            0      3.1kb          3.1kb

    (3)简单的索引操作

    创建索引:PUT /test_index?pretty
    
    health status index      uuid                   pri rep docs.count docs.deleted store.size pri.store.size
    yellow open   test_index XmS9DTAtSkSZSwWhhGEKkQ   5   1          0            0       650b           650b
    yellow open   .kibana    rUm9n9wMRQCCrRDEhqneBg   1   1          1            0      3.1kb          3.1kb
    删除索引:DELETE /test_index?pretty

     health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
      yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb

    4. 商品的CRUD操作

    (1)新增商品:新增文档,建立索引

    PUT /index/type/id
    {
      "json数据"
    }
    
    PUT /ecommerce/product/1
    {
        "name" : "gaolujie yagao",
        "desc" :  "gaoxiao meibai",
        "price" :  30,
        "producer" :      "gaolujie producer",
        "tags": [ "meibai", "fangzhu" ]
    }
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 1,
      "result": "created",
      "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
      },
      "created": true
    }
    
    PUT /ecommerce/product/2
    {
        "name" : "jiajieshi yagao",
        "desc" :  "youxiao fangzhu",
        "price" :  25,
        "producer" :      "jiajieshi producer",
        "tags": [ "fangzhu" ]
    }
    
    PUT /ecommerce/product/3
    {
        "name" : "zhonghua yagao",
        "desc" :  "caoben zhiwu",
        "price" :  40,
        "producer" :      "zhonghua producer",
        "tags": [ "qingxin" ]
    }

    es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索

    (2)查询商品:检索文档

    GET /index/type/id
    GET /ecommerce/product/1
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 1,
      "found": true,
      "_source": {
        "name": "gaolujie yagao",
        "desc": "gaoxiao meibai",
        "price": 30,
        "producer": "gaolujie producer",
        "tags": [
          "meibai",
          "fangzhu"
        ]
      }
    }

    (3)修改商品:替换文档

    PUT /ecommerce/product/1
    {
        "name" : "jiaqiangban gaolujie yagao",
        "desc" :  "gaoxiao meibai",
        "price" :  30,
        "producer" :      "gaolujie producer",
        "tags": [ "meibai", "fangzhu" ]
    }
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 1,
      "result": "created",
      "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
      },
      "created": true
    }
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 2,
      "result": "updated",
      "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
      },
      "created": false
    }
    
    
    PUT /ecommerce/product/1
    {
        "name" : "jiaqiangban gaolujie yagao"
    }

    替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改

    (4)修改商品:更新文档

    POST /ecommerce/product/1/_update
    {
      "doc": {
        "name": "jiaqiangban gaolujie yagao"
      }
    }
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 8,
      "result": "updated",
      "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
      }
    }

    (5)删除商品:删除文档

    DELETE /ecommerce/product/1
    
    {
      "found": true,
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "_version": 9,
      "result": "deleted",
      "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
      }
    }
    
    {
      "_index": "ecommerce",
      "_type": "product",
      "_id": "1",
      "found": false
    }
  • 相关阅读:
    Android数据加密之异或加密算法
    Android数据加密之SHA安全散列算法
    Android数据加密之Base64编码算法
    Android数据加密之MD5加密
    Android业务组件化之子模块SubModule的拆分以及它们之间的路由Router实现
    Android业务组件化之现状分析与探讨
    Android业务组件化之URL Scheme使用
    Android消息传递之基于RxJava实现一个EventBus
    mysql存储中文乱码
    MongoDB中创建root的角色失败:Error couldn’t add user No role named root@test
  • 原文地址:https://www.cnblogs.com/sunfie/p/7016697.html
Copyright © 2020-2023  润新知