• HiveQL与SQL区别


    转自:http://www.aboutyun.com/thread-7327-1-1.html

    1、Hive不支持等值连接

      SQL中对两表内联可以写成:select * from dual a,dual b where a.key = b.key;
        Hive中应为:select * from dual a join dual b on a.key = b.key;
        而不是传统的格式:SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2 WHERE t1.a2 = t2.b2
    2、分号字符
        分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:select concat(key,concat(';',key)) from dual;
    但HiveQL在解析语句时提示:FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification,解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:select concat(key,concat('73',key)) from dual;
    3、IS [NOT] NULL
        SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False.
    4、Hive不支持将数据插入现有的表或分区中,
    仅支持覆盖重写整个表,示例如下:

    INSERT OVERWRITE TABLE t1  
    SELECT * FROM t2; 

    5、hive不支持INSERT INTO 表 Values(), UPDATE, DELETE操作
        尽量避免使用很复杂的锁机制来读写数据:INSERT INTO就是在表或分区中追加数据。
    6、hive支持嵌入mapreduce程序,来处理复杂的逻辑

    1 FROM (  
    2 MAP doctext USING 'python wc_mapper.py' AS (word, cnt)  
    3 FROM docs  
    4 CLUSTER BY word  
    5 ) a  
    6 REDUCE word, cnt USING 'python wc_reduce.py';  

    doctext: 是输入,word, cnt: 是map程序的输出CLUSTER BY: 将wordhash后,又作为reduce程序的输入并且map程序、reduce程序可以单独使用,如:

    1 FROM (  
    2 FROM session_table  
    3 SELECT sessionid, tstamp, data  
    4 DISTRIBUTE BY sessionid SORT BY tstamp  
    5 ) a  
    6 REDUCE sessionid, tstamp, data USING 'session_reducer.sh';  

    DISTRIBUTE BY: 用于给reduce程序分配行数据。

    7、hive支持将转换后的数据直接写入不同的表,还能写入分区、hdfs和本地目录
        这样能免除多次扫描输入表的开销。

    FROM t1  
      
    INSERT OVERWRITE TABLE t2  
    SELECT t3.c2, count(1)  
    FROM t3  
    WHERE t3.c1 <= 20  
    GROUP BY t3.c2  
      
    INSERT OVERWRITE DIRECTORY '/output_dir'  
    SELECT t3.c2, avg(t3.c1)  
    FROM t3  
    WHERE t3.c1 > 20 AND t3.c1 <= 30  
    GROUP BY t3.c2  
      
    INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'  
    SELECT t3.c2, sum(t3.c1)  
    FROM t3  
    WHERE t3.c1 > 30  
    GROUP BY t3.c2;  

    实际实例

    一、创建一个表
    CREATE TABLE u_data (
    userid INT,
    movieid INT,
    rating INT,
    unixtime STRING)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '/t'
    STORED AS TEXTFILE;
    下载示例数据文件,并解压缩
    wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
    tar xvzf ml-data.tar__0.gz

    二、加载数据到表中:
    LOAD DATA LOCAL INPATH 'ml-data/u.data' OVERWRITE INTO TABLE u_data;

    三、统计数据总量:
    SELECT COUNT(1) FROM u_data;

    四、现在做一些复杂的数据分析:
    创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
    import sys
    import datetime
    for line in sys.stdin:
    line = line.strip()
    userid, movieid, rating, unixtime = line.split('/t')

    五、生成数据的周信息
    weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
    print '/t'.join([userid, movieid, rating, str(weekday)])

    六、使用映射脚本
    //创建表,按分割符分割行中的字段值
    CREATE TABLE u_data_new (
    userid INT,
    movieid INT,
    rating INT,
    weekday INT)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '/t';
    //将python文件加载到系统
    add FILE weekday_mapper.py;

    七、将数据按周进行分割
    INSERT OVERWRITE TABLE u_data_new
    SELECT
    TRANSFORM (userid, movieid, rating, unixtime)
    USING 'python weekday_mapper.py'
    AS (userid, movieid, rating, weekday)
    FROM u_data;

    SELECT weekday, COUNT(1)
    FROM u_data_new
    GROUP BY weekday;

    八、处理Apache Weblog 数据
    将WEB日志先用正则表达式进行组合,再按需要的条件进行组合输入到表中
    add jar ../build/contrib/hive_contrib.jar;

    CREATE TABLE apachelog (
    host STRING,
    identity STRING,
    user STRING,
    time STRING,
    request STRING,
    status STRING,
    size STRING,
    referer STRING,
    agent STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
    WITH SERDEPROPERTIES (
    "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?",
    "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
    )
    STORED AS TEXTFILE

  • 相关阅读:
    代码走读 airflow 2
    sql 查询相关
    控制你的鼠标和键盘
    TODO
    二进制流的操作收集
    daterangepicker-双日历
    datetimepicker使用
    ADO执行事务
    动态添加表sql
    执行带返回值的存储过程
  • 原文地址:https://www.cnblogs.com/sunfie/p/4650879.html
Copyright © 2020-2023  润新知