• Codeforces 1276D/1259G Tree Elimination (树形DP)


    题目链接

    http://codeforces.com/contest/1276/problem/D

    题解

    我什么DP都不会做,吃枣药丸……
    (f_{u,j})表示(u)子树内,(j=0)要求(u)点在轮到其父边之前被删,(j=1)要求(u)点被其父边删掉,(j=2)要求(u)点在其父边之后被删或者最后没有被删。
    转移: 设儿子有(s)个,分别为(v_1,v_2,...,v_s), 且按边的编号从小到大排序,父边编号位于(d)((d+1))之间。
    枚举被哪条边删除。

    [f_{u,0}=sum^d_{i=1}(prod^{i-1}_{j=1}(f_{v_j,0}+f_{v_j,1})cdot f_{v_i,2}cdot prod^s_{j=i+1}(f_{v_j,0}+f_{v_j,2})) ]

    [f_{u,1}=prod^d_{i=1}(f_{v_j,0}+f_{v_j,1})cdot prod^s_{i=d+1}(f_{v_j,0}+f_{v_j,2}) ]

    [f_{u,2}=sum^s_{i=d+1}(prod^{i-1}_{j=1}(f_{v_j,0}+f_{v_j,1})cdot f_{v_i,2}cdot prod^s_{j=i+1}(f_{v_j,0}+f_{v_j,2}))+prod^{s}_{i=1}(f_{v_j,0}+f_{v_j,1}) ]

    维护前后缀积即可。
    时间复杂度(O(n)).

    代码

    #include<bits/stdc++.h>
    #define llong long long
    #define pii pair<int,int>
    #define mkpr make_pair
    using namespace std;
    
    inline int read()
    {
    	int x = 0,f = 1; char ch = getchar();
    	for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}
    	for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}
    	return x*f;
    }
    
    const int N = 2e5;
    const int P = 998244353;
    vector<pii> adj[N+3];
    int fa[N+3],fae[N+3];
    llong aux1[N+3],aux2[N+3];
    llong f[N+3][3];
    int n,en;
    
    void dfs(int u)
    {
    	sort(adj[u].begin(),adj[u].end()); int faid = -1,adjn = adj[u].size();
    	for(int i=0; i<adj[u].size(); i++)
    	{
    		int o = adj[u][i].first,v = adj[u][i].second;
    		if(v==fa[u]) {faid = i; continue;} fa[v] = u,fae[v] = o;
    		dfs(v);
    	}
    	aux1[0] = 1ll;
    	for(int i=0; i<adj[u].size(); i++)
    	{
    		int v = adj[u][i].second; if(v==fa[u]) {aux1[i+1] = aux1[i]; continue;}
    		aux1[i+1] = aux1[i]*(f[v][0]+f[v][1])%P;
    	}
    	aux2[adj[u].size()+1] = 1ll;
    	for(int i=(int)adj[u].size()-1; i>=0; i--)
    	{
    		int v = adj[u][i].second; if(v==fa[u]) {aux2[i+1] = aux2[i+2]; continue;}
    		aux2[i+1] = aux2[i+2]*(f[v][0]+f[v][2])%P;
    	}
    	f[u][0] = 0ll;
    	for(int i=0; i<faid; i++)
    	{
    		int v = adj[u][i].second;
    		llong tmp = aux1[i]*f[v][2]%P*aux2[i+2]%P; f[u][0] = (f[u][0]+tmp)%P;
    	}
    	if(faid!=-1) {f[u][1] = aux1[faid]*aux2[faid+2]%P;}
    	f[u][2] = 0ll;
    	for(int i=faid+1; i<adj[u].size(); i++)
    	{
    		int v = adj[u][i].second;
    		llong tmp = aux1[i]*f[v][2]%P*aux2[i+2]%P; f[u][2] = (f[u][2]+tmp)%P;
    	}
    	f[u][2] = (f[u][2]+aux1[adjn])%P;
    }
    
    int main()
    {
    	scanf("%d",&n);
    	for(int i=1; i<n; i++)
    	{
    		int u,v; scanf("%d%d",&u,&v);
    		adj[u].push_back(mkpr(i,v)); adj[v].push_back(mkpr(i,u));
    	}
    	dfs(1);
    	printf("%I64d
    ",f[1][2]);
    	return 0;
    }
    
  • 相关阅读:
    浅析区间问题
    关于参加信息竞赛
    路爷爷语录
    CentOS-7安装python虚拟环境
    开发笔记(不定时更新)
    Redis有序集合的权重值选择
    数据缓存(Redis)流程设计--思路
    Flask框架之配置日志信息
    Flask框架之一对多关系模型定义
    Flask框架之多对多关系模型类的定义
  • 原文地址:https://www.cnblogs.com/suncongbo/p/12072371.html
Copyright © 2020-2023  润新知