题目链接
https://atcoder.jp/contests/agc038/tasks/agc038_d
题解
orz zjr神仙做法
考虑把所有(C_i=0)的提示的两点连边,那么连完之后的每个连通块都是一棵树
那么同一连通块内就不能出现(C_i=1)的提示,然后不同连通块之间可以任意连边,但是要满足两个连通块之间只能连一条边,还要连通
设有(c)个连通块,那么就要在连通块之间连(m-(n-c))条边
如果没有(C_i=1)的提示,就只要求(c-1le m-(n-c)le frac{c(c-1)}{2})
如果有,就要求(max(3,c)le m-(n-c)le frac{c(c-1)}{2})
时间复杂度(O(n))
代码
#include<cstdio>
#include<cstdlib>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 2e5;
struct Element
{
int u,v,typ;
} a[N+3];
int uf[N+3];
int n,q,c; llong m;
int findfa(int u) {return uf[u]==u?u:uf[u]=findfa(uf[u]);}
int main()
{
scanf("%d%lld%d",&n,&m,&q);
for(int i=1; i<=n; i++) uf[i] = i;
for(int i=1; i<=q; i++)
{
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].typ); a[i].u++; a[i].v++;
if(a[i].typ==0)
{
int uu = findfa(a[i].u),vv = findfa(a[i].v);
if(uu!=vv) {uf[uu] = vv;}
}
}
int cnt1 = 0; c = 0;
for(int i=1; i<=n; i++) {if(i==findfa(i)) c++;}
for(int i=1; i<=q; i++)
{
if(a[i].typ==1)
{
cnt1++;
int uu = findfa(a[i].u),vv = findfa(a[i].v);
if(uu==vv) {puts("No"); return 0;}
}
}
llong l = cnt1?max(3ll,(llong)c):c-1ll,r = 1ll*c*(c-1ll)/2ll;
if(m-(n-c)>=l && m-(n-c)<=r) {puts("Yes");}
else {puts("No");}
return 0;
}