我现在真的什么都不会了呢......
题目链接: https://www.codechef.com/problems/SEAARC
好吧,这题其实考察的是枚举的功力……
题目要求的是(ABAB)的数量,这个不太好求,但是不同颜色区间对的总数和(AABB,ABBA)的都比较好求
补集转化,求(ans0,ans1,ans2), 分别表示总数、(AABB)、(ABBA)的数量
(ans0)很好算
(ans1), 枚举(B)的左端点
(ans2), 分块讨论
若(A,B)都是小颜色(该颜色块的数量小于阈值),则枚举(A)的左右端点,变成二维数点
若(A)是大颜色(B)是小颜色,则枚举(A)的种类,然后枚举(B)的种类和左右端点,推一下式子发现可以维护前缀和省去枚举左端点
若(B)是大颜色,同理枚举(B)的种类然后枚举(A)的种类和左右端点,同样省去枚举左端点
从昨天下午做到今天上午。。
理论最优时间复杂度(O(nsqrt{nlog n}))
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<vector>
#include<cmath>
#define llong long long
using namespace std;
const int N = 1e5;
const int P = 1e9+7;
const llong INV2 = 5e8+4;
int nxt[N+3];
int lstpos[N+3];
int a[N+3];
int num[N+3];
int cnum[N+3];
llong tmp0[N+3],tmp1[N+3],tmp2[N+3];
vector<int> clrpos[N+3];
int n,m,B;
llong ans1,ans2a,ans2b,ans2c,ans0,ans;
llong C2(llong x) {return x*(x-1ll)/2ll%P;}
llong update(llong &x,llong y) {x = (x+y)%P;}
struct BITree
{
llong tr[N+3]; int siz;
void addval(int lrb,llong val)
{
while(lrb<=siz)
{
update(tr[lrb],val);
lrb += (lrb&(-lrb));
}
}
llong querysum(llong rb)
{
llong ret = 0ll;
while(rb)
{
update(ret,tr[rb]);
rb -= (rb&(-rb));
}
return ret;
}
void clear()
{
for(int i=0; i<=siz; i++) tr[i] = 0ll;
}
} bit1,bit2;
void getans0() //ans0=ËùÓÐÑÕÉ«C(num,2)Á½Á½³Ë»ýÖ®ºÍ ²»ËãAAAA
{
llong cur = 0ll;
for(int i=1; i<=m; i++)
{
llong tmp = C2(num[i]);
update(ans0,cur*tmp%P);
update(cur,tmp);
}
}
void getans1() //²»ËãAAAA
{
llong tmp = 0ll; //µ±Ç°×ܹ²Í¬É«Çø¼äµÄ¸öÊý
for(int i=1; i<=n; i++)
{
update(ans1,(tmp-C2(cnum[a[i]]))*(num[a[i]]-cnum[a[i]]-1)); //ÕâÖÖÑÕÉ«×ܸöÊý¼õÕâ֮ǰµÄ¸öÊý-1£¬µÈÓÚÕâÖ®ºóµÄ¸öÊý£¬³ËÒÔÇ°ÃæµÄÒìÉ«¸öÊý
update(tmp,(llong)cnum[a[i]]); //ÕâÖÖÑÕɫ֮ǰµÄ¸öÊý
cnum[a[i]]++;
}
}
void getans2a() //small-small ²»ËãAAAA
{
bit1.siz = n; bit1.clear(); llong cur = 0ll;
for(int i=1; i<=n; i++) //ö¾ÙÓҶ˵ã
{
if(num[a[i]]<=B)
{
int tnum = 0;
for(int j=nxt[i]; j; j=nxt[j])
{
llong tmp = cur-bit1.querysum(j)-C2(tnum)+P+P; //>jµÄ×ó¶ËµãµÄ¸öÊý=×ܸöÊý¼õ<=jµÄ¸öÊý£¬È¥µôͬɫµÄ¸öÊý(²»ËãiºÍj)
update(ans2a,tmp);
tnum++; //ͬɫ¸öÊý
}
for(int j=nxt[i]; j; j=nxt[j]) //ÓÉÓÚÊÇÓҶ˵ãСÓÚj£¬ÏÈÐ޸ĺó²éѯ
{
cur++; //Ä¿Ç°Çø¼ä×ܸöÊý,¼´bit1.querysum(i)
bit1.addval(j,1);
}
}
}
}
void getans2b() //large-small
{
for(int i=1; i<=m; i++) //ö¾ÙAÖÖÀà
{
if(num[i]>B)
{
tmp1[0] = 0ll; for(int j=1; j<=n; j++) tmp1[j] = tmp1[j-1]+(a[j]==i?1:0);
for(int j=1; j<=m; j++) //ö¾ÙBÖÖÀà
{
if(num[j]<=B)
{
llong cur = 0ll;
for(int k=0; k<clrpos[j].size(); k++)
{
int rb = clrpos[j][k];
llong tmp = (num[i]-tmp1[rb])*cur%P;
update(ans2b,tmp);
update(cur,tmp1[rb]); //lb²»¿ÉµÈÓÚrb, ËùÒÔÏȸüÐÂans2bÔÙ¸üÐÂcur
}
}
}
}
}
}
void getans2c() //large-large or small-large ²»ËãAAAA
{
for(int i=1; i<=m; i++) //ö¾ÙBµÄÖÖÀà
{
if(num[i]>B)
{
tmp1[0] = 0; for(int j=1; j<=n; j++) tmp1[j] = tmp1[j-1]+(a[j]==i?1:0);
for(int j=1; j<=m; j++) //ö¾ÙAµÄÖÖÀà
{
if(i==j) continue;
llong cur1 = 0ll,cur2 = 0ll;
for(int k=0; k<clrpos[j].size(); k++) //ö¾Ùra
{
//¸üÐÂans2c
int ra = clrpos[j][k];
llong tmp = tmp1[ra]*tmp1[ra]%P*k%P;
update(ans2c,tmp);
tmp = tmp1[ra]*(-2ll*cur1-k)%P+P;
update(ans2c,tmp);
tmp = cur2+cur1+P;
update(ans2c,tmp);
//¸üÐÂcur1,cur2
update(cur2,tmp1[ra]*tmp1[ra]);
update(cur1,tmp1[ra]);
}
}
}
}
ans2c = ans2c*INV2%P;
}
int main()
{
scanf("%d",&n); B = sqrt(n)/2;
for(int i=1; i<=n; i++) scanf("%d",&a[i]),num[a[i]]++,m = max(m,a[i]),clrpos[a[i]].push_back(i);
for(int i=1; i<=n; i++)
{
nxt[i] = lstpos[a[i]];
lstpos[a[i]] = i;
}
getans0();
getans1();
getans2a();
getans2b();
getans2c();
ans = ((ans0-ans1-ans2a-ans2b-ans2c)%P+P)%P;
printf("%lld
",ans);
return 0;
}