一、单点Redis弊端
1、数据丢失问题:Redis是内存存储,服务器重启可能会丢失数据
2、并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景
3、故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段
4、存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求
解决方案:
1、数据丢失问题:数据持久化
2、并发能力问题:搭建主从集群,实现读写分离
3、故障恢复问题:利用Redis哨兵,实现健康监测和故障自动恢复
4、存储能力问题:搭建分片集群,利用插槽机制实现动态扩容
二、Redis的持久化
Redis持久化方式有RDB和AOF两种。
1、RDB
1、概念
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。 快照文件称为RDB文件,默认是保存在当前运行目录。
2、RDB执行时机
1、使用命令save手动执行
2、Redis停机时执行一次
3、在Redis配置文件中配置RDB执行条件
3、RDB执行原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存;
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
4、总结
1、RDB方式bgsave的基本流程?
- fork主进程得到一个子进程,共享内存空间
- 子进程读取内存数据并写入新的RDB文件
- 用新RDB文件替换旧的RDB文件。
2、RDB会在什么时候执行?save 60 1000代表什么含义?
- 默认是服务停止时。
- 代表60秒内至少执行1000次修改则触发RDB
3、RDB的缺点?
- RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
- fork子进程、压缩、写出RDB文件都比较耗时
2、AOF
1、概念
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
2、AOF配置
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
AOF的命令记录的频率也可以通过redis.conf文件来配:
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
3、RDB和AOF的异同
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
三、Redis主从
1、搭建主从架构
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
2、主从原理
1、全量同步
主从第一次同步是全量同步:
master如何判断slave是不是第一次来同步数据?这里会用到两个很重要的概念:
- Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
- offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。
- 如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据
2、总结
简述全量同步的流程?
- slave节点请求增量同步
- master节点判断replid,发现不一致,拒绝增量同步
- master将完整内存数据生成RDB,发送RDB到slave
- slave清空本地数据,加载master的RDB
- master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
- slave执行接收到的命令,保持与master之间的同步
3、增量同步
主从第一次是全量同步,slave重启后同步,则是增量同步。
repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
可以从以下几个方面来优化Redis主从就集群:
- 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
- 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
- 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
4、总结
简述全量同步和增量同步区别?
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave节点第一次连接master节点时
- slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
- slave节点断开又恢复,并且在repl_baklog中能找到offset时
思考:slave节点宕机恢复后可以找master节点同步数据,那master节点宕机怎么办?
四、Redis哨兵
1、哨兵的作用及原理
1、哨兵的作用
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。哨兵的结构和作用如下:
- 监控:Sentinel 会不断检查您的master和slave是否按预期工作
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
2、服务状态监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
- 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
- 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
3、选举新的master
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
- 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
- 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
- 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
4、如何实现故障转移
当选中了其中一个slave为新的master后(例如slave1),故障的转移的步骤如下:
- sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
- sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
- 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
2、总结
Sentinel的三个作用是什么?
- 监控
- 故障转移
- 通知
Sentinel如何判断一个redis实例是否健康?
- 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
- 如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
- 首先选定一个slave作为新的master,执行slaveof no one
- 然后让所有节点都执行slaveof 新master
- 修改故障节点配置,添加slaveof 新master
2、搭建哨兵集群
3、RedisTemplate的哨兵模式
1、引入依赖
<dependency> <groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>2、配置文件设置
spring: redis: sentinel: nodes: # 配置sentinel集群地址 - 192.168.73.128:27001 - 192.168.73.128:27002 - 192.168.73.128:27003 master: mymaster # 指定主从集群名3、配置主从读写分离
@Bean public LettuceClientConfigurationBuilderCustomizer configurationBuilderCustomizer(){ return configBuilder -> configBuilder.readFrom(ReadFrom.REPLICA_PREFERRED); }这里的ReadFrom是配置Redis的读取策略,是一个枚举,包括下面选择:
- MASTER:从主节点读取
- MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
- REPLICA:从slave(replica)节点读取
- REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
五、Redis分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
- 海量数据存储问题
- 高并发写的问题
使用分片集群可以解决上述问题,分片集群特征:
- 集群中有多个master,每个master保存不同数据
- 每个master都可以有多个slave节点
- master之间通过ping监测彼此健康状态
- 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
1、搭建分片集群
2、散列插槽
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
- key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
- key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
Redis如何判断某个key应该在哪个实例?
- 将16384个插槽分配到不同的实例
- 根据key的有效部分计算哈希值,对16384取余
- 余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
- 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
3、集群伸缩
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
比如,添加节点的命令:
常用命令:
redis-cli -p 7001 cluster nodes # 查看集群节点信息
redis-cli --cluster help # 集群帮助信息
4、故障转移
1、自动故障转移
当集群中有一个master宕机会发生什么呢?
- 首先是该实例与其它实例失去连接
- 然后是疑似宕机:
3.最后是确定下线,自动提升一个slave为新的master:
2、手动故障转移
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
手动的Failover支持三种不同模式:
- 缺省:默认的流程,如图1~6歩
- force:省略了对offset的一致性校验
- takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
5、RedisTemplate访问分片集群
1、引入依赖
<dependency> <groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>2、配置文件设置
spring:
redis:
cluster:
nodes:
- 192.168.73.128:7001
- 192.168.73.128:7002
- 192.168.73.128:7003
- 192.168.73.128:8001
- 192.168.73.128:8002
- 192.168.73.128:80033、配置主从读写分离
@Bean public LettuceClientConfigurationBuilderCustomizer configurationBuilderCustomizer(){ return configBuilder -> configBuilder.readFrom(ReadFrom.REPLICA_PREFERRED); }