• requests模块的高级应用


    requests抓取数据报错

    - HttpConnectinPool:
        - 原因:
            - 1.短时间内发起了高频的请求导致ip被禁
            - 2.http连接池中的连接资源被耗尽
        - 解决:
            - 1.代理
            - 2.headers中加入Conection:“close”

    代理服务器

    - 代理:代理服务器,可以接受请求然后将其转发。
    - 匿名度
        - 高匿:既不知道请求者使用了代理,也不知道请求者的真实IP
        - 匿名:知道请求者使用了代理,但是不知道请求者的真实IP
        - 透明:知道请求者使用了代理并且知道请求者的真实IP
    - 类型:
        - http
        - https
    - 免费代理:
        - www.goubanjia.com
        - 快代理
        - 西祠代理
        - http://http.zhiliandaili.cn/
        

    在requests.get()方法中使用代理IP

    import requests
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
    }
    url = 'https://www.baidu.com/s?wd=ip'
    page_text = requests.get(url,headers=headers,proxies={'https':'111.231.94.44:8888'}).text
    with open('ip.html','w',encoding='utf-8') as fp:
        fp.write(page_text)

    手动生成代理池

    import random
    proxy_list = [
        {'https':'121.231.94.44:8888'},
        {'https':'131.231.94.44:8888'},
        {'https':'141.231.94.44:8888'}
    ]
    url = 'https://www.baidu.com/s?wd=ip'
    page_text = requests.get(url,headers=headers,proxies=random.choice(proxy_list)).text
    with open('ip.html','w',encoding='utf-8') as fp:
        fp.write(page_text)

    从网上抓取代理IP自动生成代理池

    from lxml import etree
    import random
    
    #从代理精灵中提取代理ip(用于爬取免费代理IP的代理IP是付费的)
    ip_url = 'http://t.11jsq.com/index.php/api/entry?method=proxyServer.generate_api_url&packid=1&fa=0&fetch_key=&groupid=0&qty=4&time=1&pro=&city=&port=1&format=html&ss=5&css=&dt=1&specialTxt=3&specialJson=&usertype=2'
    page_text = requests.get(ip_url,headers=headers).text
    tree = etree.HTML(page_text)
    ip_list = tree.xpath('//body//text()')
    print(ip_list)
    
    #爬取西祠代理
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36',
        'Connection':"close"
    }
    url = 'https://www.xicidaili.com/nn/%d'
    proxy_list_http = []
    proxy_list_https = []
    for page in range(1,20):
        new_url = format(url%page)
        ip_port = random.choice(ip_list)
        page_text = requests.get(new_url,headers=headers,proxies={'https':ip_port}).text
        tree = etree.HTML(page_text)
        #tbody不可以出现在xpath表达式中
        tr_list = tree.xpath('//*[@id="ip_list"]//tr')[1:]
        for tr in tr_list:
            ip = tr.xpath('./td[2]/text()')[0]
            port = tr.xpath('./td[3]/text()')[0]
            t_type = tr.xpath('./td[6]/text()')[0]
            ips = ip+':'+port
            if t_type == 'HTTP':
                dic = {
                    t_type: ips
                }
                proxy_list_http.append(dic)
            else:
                dic = {
                    t_type:ips
                }
                proxy_list_https.append(dic)
    print(len(proxy_list_http),len(proxy_list_https))
    
    
    #检测代理IP是否可用
    for ip in proxy_list_http:
        response = requests.get('https://www/sogou.com',headers=headers,proxies={'https':ip})
        if response.status_code == '200':
            print('检测到了可用ip')

    Cookie

    - cookie的处理
        - 手动处理:将cookie封装到headers中
        - 自动处理:session对象。可以创建一个session对象,改对象可以像requests一样进行请求发送。不同之处在于如果在使用session进行请求发送的过程中产生了cookie,则cookie会被自动存储在session对象中。

    示例1.1(不携带Cookie访问)

    import requests
    #对雪球网中的新闻数据进行爬取https://xueqiu.com/
    url="https://xueqiu.com/"
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36',
    }
    response_text=requests.get(url,headers).text
    response_text

    此时是获取不到网页的数据信息,因为如果想要访问页面的数据,需要携带Cookie数据。

    示例1.2(手动添加Cookie后访问)

    import requests
    url="https://xueqiu.com/"
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36',
        'Cookie':"aliyungf_tc=AQAAAG6X1z3opwMAkLryeKCukrQNV62H; acw_tc=2760822e15886875892523578ed4228020edfe26c3c0eb41d7d9467d8bf6e3; xq_a_token=48575b79f8efa6d34166cc7bdc5abb09fd83ce63; xqat=48575b79f8efa6d34166cc7bdc5abb09fd83ce63; xq_r_token=7dcc6339975b01fbc2c14240ce55a3a20bdb7873; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTU4OTY4MjczMCwiY3RtIjoxNTg4Njg3NTYzMDY1LCJjaWQiOiJkOWQwbjRBWnVwIn0.oXNGRbTOZfgChAFNq-BN9v7Q01-ogPgYI-nNDdasJKwSIF4TpfPgTZzRQ6evFHxCmX22GvrL-N7nCVwYTnWWn-7oB7K9d6dagYPja5uWqBNwI1qL7A5yP_SF4OG0meC2BSOU-gAt7whoE7DC-ChkJL0CJ5ZyqjNnYsl_EJjPUDMvEm0ex6surEHJW3uIfh15iIUYJKrjT5FxxjkyNe_C0KjIZXRgJMK77-rcTxlBxzHJkeCIsEKwpEYjKTWAJJYL4r-gC49wJvT_Y2WrdVOtQ9rXT2Q2_rHStT-zEBb9p55ZZakfHb9uzFadI7J1Zkl6w02ns8DVt-DKKRM5XRBg3A; u=691588687589257; Hm_lvt_1db88642e346389874251b5a1eded6e3=1588687591; device_id=24700f9f1986800ab4fcc880530dd0ed; s=co11ch62mg; __utma=1.206451581.1588687610.1588687610.1588687610.1; __utmc=1; __utmz=1.1588687610.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.1.10.1588687610; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1588687614",
    }
    response_text=requests.get(url,headers=headers).text
    response_text=response_text.encode("iso-8859-1").decode("utf-8")
    response_text

    此时可以获得页面数据信息,但是如果目标网站每次访问的Cookie是动态生成的,手动添加就行不通了。

    示例1.3(使用Session对象自动获取并添加Cookie到请求信息中)

    import requests
    url="https://xueqiu.com/"
    headers = {
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36',
    }
    session=requests.Session()
    response_text=session.get(url,headers=headers).text
    response_text=response_text.encode("iso-8859-1").decode("utf-8")
    response_text

    此时也是能够顺利取到网页数据。

    自动登录中的图片验证码识别

    - 验证码的识别
        - 超级鹰:http://www.chaojiying.com/about.html
            - 注册:(用户中心身份)
            - 登陆:
                - 创建一个软件:899370
                - 下载示例代码
        - 打码兔
        - 云打码

    古诗文网登录图片验证码识别

    #!/usr/bin/env python
    # coding:utf-8
    
    import requests
    from hashlib import md5
    
    class Chaojiying_Client(object):
    
        def __init__(self, username, password, soft_id):
            self.username = username
            password = password.encode('utf-8')
            self.password = md5(password).hexdigest()
            self.soft_id = soft_id
            self.base_params = {
                'user': self.username,
                'pass2': self.password,
                'softid': self.soft_id,
            }
            self.headers = {
                'Connection': 'Keep-Alive',
                'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
            }
    
        def PostPic(self, im, codetype):
            """
            im: 图片字节
            codetype: 题目类型 参考 http://www.chaojiying.com/price.html
            """
            params = {
                'codetype': codetype,
            }
            params.update(self.base_params)
            files = {'userfile': ('ccc.jpg', im)}
            r = requests.post('http://upload.chaojiying.net/Upload/Processing.php', data=params, files=files, headers=self.headers)
            return r.json()
    
        def ReportError(self, im_id):
            """
            im_id:报错题目的图片ID
            """
            params = {
                'id': im_id,
            }
            params.update(self.base_params)
            r = requests.post('http://upload.chaojiying.net/Upload/ReportError.php', data=params, headers=self.headers)
            return r.json()
    # 返回验证码文本
    def transformImg(imgPath,type_code):
        chaojiying = Chaojiying_Client('15922471244', 'sun10387834...', '904968')
        im = open(imgPath, 'rb').read()
        return chaojiying.PostPic(im, type_code)
    # 古诗文网验证码识别
    from lxml import etree
    url="https://so.gushiwen.org/user/login.aspx?from=http://so.gushiwen.org/user/collect.aspx"
    response_text=requests.get(url,headers=headers).text
    tree=etree.HTML(response_text)
    img_src="https://so.gushiwen.org"+tree.xpath('//img[@id="imgCode"]/@src')[0]
    img_data=requests.get(url=img_src,headers=headers).content
    with open("./code.jpg","wb") as fp:
        fp.write(img_data)
    code_text=transformImg("./code.jpg",1902)
    print(code_text)

    模拟登陆古诗文网

    # 模拟登陆
    from lxml import etree
    import requests
    session=requests.Session()
    url="https://so.gushiwen.org/user/login.aspx?from=http://so.gushiwen.org/user/collect.aspx"
    response_text=session.get(url,headers=headers).text
    tree=etree.HTML(response_text)
    img_src="https://so.gushiwen.org"+tree.xpath('//img[@id="imgCode"]/@src')[0]
    img_data=session.get(url=img_src,headers=headers).content
    with open("./code.jpg","wb") as fp:
        fp.write(img_data)
    code_text=transformImg("./code.jpg",1902)["pic_str"]
    __VIEWSTATE=tree.xpath('//input[@id="__VIEWSTATE"]/@value')[0]
    __VIEWSTATEGENERATOR=tree.xpath('//input[@id="__VIEWSTATEGENERATOR"]/@value')[0]
    # print(code_text)
    # print(__VIEWSTATE)
    # print(__VIEWSTATEGENERATOR)
    
    login_url="https://so.gushiwen.org/user/login.aspx?from=http%3a%2f%2fso.gushiwen.org%2fuser%2fcollect.aspx"
    data={
        "__VIEWSTATE":__VIEWSTATE,
        "__VIEWSTATEGENERATOR": __VIEWSTATEGENERATOR,
        'from':" http://so.gushiwen.org/user/collect.aspx",
        "email": "15922471244",
        "pwd": "sun10387834...",
        "code": code_text,
        "denglu": "登录",
    }
    response_content=session.post(login_url,data=data,headers=headers).text
    with open("./gushiwen.html","w",encoding="utf-8") as fp:
        fp.write(response_content)

    模拟登陆经验总结:

    常规的模拟登陆网站流程。
    1:用户名 密码 验证码 在发起登录请求时要携带发送到服务端
    2:如果登陆不成功,首先考虑data数据中是否有动态变化的请求参数(通常情况下动态变化的请求参数都会被隐藏在前台页面源码中)
    3:如果携带动态数据登录还是失败,则需要考虑Cookie情况。可以使用Session对象发起网络请求。

     线程池提高爬虫效率

    客户端代码

    # 使用了线程池的爬虫代码
    from multiprocessing.dummy import Pool
    import time
    start = time.time()
    urls = [
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay'
    ]
    def get_request(url):
        page_text = requests.get(url).text
        print(page_text)
    pool = Pool(3)
    pool.map(get_request,urls)
    
    print('总耗时:',time.time()-start)

    服务器端代码

    from flask import Flask
    import time
    
    app = Flask(__name__)
    
    
    @app.route('/bobo')
    def index_bobo():
        time.sleep(2)
        return 'Hello bobo'
    
    @app.route('/jay')
    def index_jay():
        time.sleep(2)
        return 'Hello jay'
    
    @app.route('/tom')
    def index_tom():
        time.sleep(2)
        return 'Hello tom'
    
    if __name__ == '__main__':
        app.run(threaded=True)

    运行后发现原本需要4秒完成的任务,使用了线程池之后2秒就完成了。

     单线程+多任务异步协程提高爬虫效率

    ### 单线程+多任务异步协程
    - 协程
        - 在函数(特殊的函数)定义的时候,如果使用了async修饰的话,则改函数调用后会返回一个协程对象,并且函数内部的实现语句不会被立即执行
    - 任务对象
        - 任务对象就是对协程对象的进一步封装。任务对象==高级的协程对象==特殊的函数
        - 任务对象时必须要注册到事件循环对象中
        - 给任务对象绑定回调:爬虫的数据解析中
    - 事件循环
        - 当做是一个容器,容器中必须存放任务对象。
        - 当启动事件循环对象后,则事件循环对象会对其内部存储任务对象进行异步的执行。
    - aiohttp:支持异步网络请求的模块

    简单了解几个概念

    协程

    import asyncio
    def callback(task):#作为任务对象的回调函数
        print('i am callback and ',task.result())
    
    async def test():
        print('i am test()')
        return 'bobo'
    
    c = test()
    #封装了一个任务对象
    task = asyncio.ensure_future(c)
    task.add_done_callback(callback)
    #创建一个事件循环的对象
    loop = asyncio.get_event_loop()
    loop.run_until_complete(task)

    多任务

    import asyncio
    import time
    start = time.time()
    #在特殊函数内部的实现中不可以出现不支持异步的模块代码
    async def get_request(url):
        await asyncio.sleep(2)
        print('下载成功:',url)
    
    urls = [
        'www.1.com',
        'www.2.com'
    ]
    tasks = []
    for url in urls:
        c = get_request(url)
        # 创建任务
        task = asyncio.ensure_future(c)
        tasks.append(task)
    
    loop = asyncio.get_event_loop()
    #注意:挂起操作需要手动处理
    loop.run_until_complete(asyncio.wait(tasks))
    print(time.time()-start)

    示例应用

    import requests
    import aiohttp
    import time
    import asyncio
    s = time.time()
    urls = [
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay'
    ]
    
    # async def get_request(url):
    #     page_text = requests.get(url).text
    #     return page_text
    async def get_request(url):
       async with aiohttp.ClientSession() as s:
           async with await s.get(url=url) as response:
               page_text = await response.text()
               print(page_text)
       return page_text
    tasks = []
    for url in urls:
        c = get_request(url)
        task = asyncio.ensure_future(c)
        tasks.append(task)
    
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))
    
    print(time.time()-s)

     单线程+多任务异步协程实例

    import aiohttp
    import asyncio
    import time
    from lxml import etree
    
    start = time.time()
    urls = [
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay',
        'http://127.0.0.1:5000/tom',
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay',
        'http://127.0.0.1:5000/tom',
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay',
        'http://127.0.0.1:5000/tom',
        'http://127.0.0.1:5000/bobo',
        'http://127.0.0.1:5000/jay',
        'http://127.0.0.1:5000/tom'
    ]
    #特殊的函数:请求发送和响应数据的捕获
    #细节:在每一个with前加上async,在每一个阻塞操作的前边加上await
    async def get_request(url):
        async with aiohttp.ClientSession() as s:
            #s.get(url,headers,proxy="http://ip:port",params)
            async with await s.get(url) as response:
                page_text = await response.text()#read()返回的是byte类型的数据
                return page_text
    #回调函数
    def parse(task):
        page_text = task.result()
        tree = etree.HTML(page_text)
        parse_data = tree.xpath('//li/text()')
        print(parse_data)
    
    tasks = []
    for url in urls:
        c = get_request(url)
        task = asyncio.ensure_future(c)
        task.add_done_callback(parse)
        tasks.append(task)
    
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))
    
    print(time.time()-start)

    结果发现是可以实现提高效率的效果。

  • 相关阅读:
    idea--不能启动问题
    linux--mysql5.7安装
    vmware
    debezium
    java枚举
    springfox
    日志级别
    lombok--知识点
    es6--箭头函数
    网址访问过慢
  • 原文地址:https://www.cnblogs.com/sun-10387834/p/12833496.html
Copyright © 2020-2023  润新知