• C# 编写 TensorFlow 人工智能应用


    TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习。

    TensorFlow简单介绍

    TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

    TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。

    任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

    TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

    示例Python代码:

    import tensorflow as tf

    import numpy as np

    # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3

    x_data = np.random.rand(100).astype(np.float32)

    y_data = x_data * 0.1 + 0.3

    # Try to find values for W and b that compute y_data = W * x_data + b

    # (We know that W should be 0.1 and b 0.3, but TensorFlow will

    # figure that out for us.)

    W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

    b = tf.Variable(tf.zeros([1]))

    y = W * x_data + b

    # Minimize the mean squared errors.

    loss = tf.reduce_mean(tf.square(y - y_data))

    optimizer = tf.train.GradientDescentOptimizer(0.5)

    train = optimizer.minimize(loss)

    # Before starting, initialize the variables.  We will 'run' this first.

    init = tf.global_variables_initializer()

    # Launch the graph.

    sess = tf.Session()

    sess.run(init)

    # Fit the line.

    for step in range(201):

        sess.run(train)

        if step % 20 == 0:

            print(step, sess.run(W), sess.run(b))

    # Learns best fit is W: [0.1], b: [0.3]

    使用TensorFlowSharp 

    GitHub:https://github.com/migueldeicaza/TensorFlowSharp

    官方源码库,该项目支持跨平台,使用Mono。

    可以使用NuGet 安装TensorFlowSharp,如下:

    Install-Package TensorFlowSharp

    编写简单应用

    使用VS2017新建一个.NET Framework 控制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用。

    TensorFlowSharp 包比较大,需要耐心等待。

    然后在项目属性中生成->平台目标 改为 x64。

    打开Program.cs 写入如下代码:

    static void Main(string[] args)

    {

        using (var session = new TFSession())

        {

            var graph = session.Graph;

            Console.WriteLine(TFCore.Version);

            var a = graph.Const(2);

            var b = graph.Const(3);

            Console.WriteLine("a=2 b=3");

            // 两常量加

            var addingResults = session.GetRunner().Run(graph.Add(a, b));

            var addingResultValue = addingResults[0].GetValue();

            Console.WriteLine("a+b={0}", addingResultValue);

            // 两常量乘

            var multiplyResults = session.GetRunner().Run(graph.Mul(a, b));

            var multiplyResultValue = multiplyResults[0].GetValue();

            Console.WriteLine("a*b={0}", multiplyResultValue);

            var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));

            var hello = graph.Const(tft);

            var helloResults = session.GetRunner().Run(hello);

            Console.WriteLine(Encoding.UTF8.GetString((byte[])helloResults[0].GetValue()));

        }

        Console.ReadKey();

    }        

    运行程序结果如下:

    TensorFlow C# image recognition

    图像识别示例体验

    https://github.com/migueldeicaza/TensorFlowSharp/tree/master/Examples/ExampleInceptionInference

    下面学习一个实际的人工智能应用,是非常简单的一个示例,图像识别。

    新建一个 imagerecognition .NET Framework 控制台应用项目,接着添加TensorFlowSharp 引用。

    然后在项目属性中生成->平台目标 改为 x64。

    接着编写如下代码:

    class Program

    {

        static string dir, modelFile, labelsFile;

        public static void Main(string[] args)

        {

            dir = "tmp";

            List<string> files = Directory.GetFiles("img").ToList();

            ModelFiles(dir);

            var graph = new TFGraph();

            // 从文件加载序列化的GraphDef

            var model = File.ReadAllBytes(modelFile);

            //导入GraphDef

            graph.Import(model, "");

            using (var session = new TFSession(graph))

            {

                var labels = File.ReadAllLines(labelsFile);

                Console.WriteLine("TensorFlow图像识别 LineZero");

                foreach (var file in files)

                {

                    // Run inference on the image files

                    // For multiple images, session.Run() can be called in a loop (and

                    // concurrently). Alternatively, images can be batched since the model

                    // accepts batches of image data as input.

                    var tensor = CreateTensorFromImageFile(file);

                    var runner = session.GetRunner();

                    runner.AddInput(graph["input"][0], tensor).Fetch(graph["output"][0]);

                    var output = runner.Run();

                    // output[0].Value() is a vector containing probabilities of

                    // labels for each image in the "batch". The batch size was 1.

                    // Find the most probably label index.

                    var result = output[0];

                    var rshape = result.Shape;

                    if (result.NumDims != 2 || rshape[0] != 1)

                    {

                        var shape = "";

                        foreach (var d in rshape)

                        {

                            shape += $"{d} ";

                        }

                        shape = shape.Trim();

                        Console.WriteLine($"Error: expected to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape [{shape}]");

                        Environment.Exit(1);

                    }

                    // You can get the data in two ways, as a multi-dimensional array, or arrays of arrays, 

                    // code can be nicer to read with one or the other, pick it based on how you want to process

                    // it

                    bool jagged = true;

                    var bestIdx = 0;

                    float p = 0, best = 0;

                    if (jagged)

                    {

                        var probabilities = ((float[][])result.GetValue(jagged: true))[0];

                        for (int i = 0; i < probabilities.Length; i++)

                        {

                            if (probabilities[i] > best)

                            {

                                bestIdx = i;

                                best = probabilities[i];

                            }

                        }

                    }

                    else

                    {

                        var val = (float[,])result.GetValue(jagged: false);

                        // Result is [1,N], flatten array

                        for (int i = 0; i < val.GetLength(1); i++)

                        {

                            if (val[0, i] > best)

                            {

                                bestIdx = i;

                                best = val[0, i];

                            }

                        }

                    }

                    Console.WriteLine($"{Path.GetFileName(file)} 最佳匹配: [{bestIdx}] {best * 100.0}% 标识为:{labels[bestIdx]}");

                }

            }

            Console.ReadKey();

        }

        // Convert the image in filename to a Tensor suitable as input to the Inception model.

        static TFTensor CreateTensorFromImageFile(string file)

        {

            var contents = File.ReadAllBytes(file);

            // DecodeJpeg uses a scalar String-valued tensor as input.

            var tensor = TFTensor.CreateString(contents);

            TFGraph graph;

            TFOutput input, output;

            // Construct a graph to normalize the image

            ConstructGraphToNormalizeImage(out graph, out input, out output);

            // Execute that graph to normalize this one image

            using (var session = new TFSession(graph))

            {

                var normalized = session.Run(

                         inputs: new[] { input },

                         inputValues: new[] { tensor },

                         outputs: new[] { output });

                return normalized[0];

            }

        }

        // The inception model takes as input the image described by a Tensor in a very

        // specific normalized format (a particular image size, shape of the input tensor,

        // normalized pixel values etc.).

        //

        // This function constructs a graph of TensorFlow operations which takes as

        // input a JPEG-encoded string and returns a tensor suitable as input to the

        // inception model.

        static void ConstructGraphToNormalizeImage(out TFGraph graph, out TFOutput input, out TFOutput output)

        {

            // Some constants specific to the pre-trained model at:

            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

            //

            // - The model was trained after with images scaled to 224x224 pixels.

            // - The colors, represented as R, G, B in 1-byte each were converted to

            //   float using (value - Mean)/Scale.

            const int W = 224;

            const int H = 224;

            const float Mean = 117;

            const float Scale = 1;

            graph = new TFGraph();

            input = graph.Placeholder(TFDataType.String);

            output = graph.Div(

                x: graph.Sub(

                    x: graph.ResizeBilinear(

                        images: graph.ExpandDims(

                            input: graph.Cast(

                                graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),

                            dim: graph.Const(0, "make_batch")),

                        size: graph.Const(new int[] { W, H }, "size")),

                    y: graph.Const(Mean, "mean")),

                y: graph.Const(Scale, "scale"));

        }

        /// <summary>

        /// 下载初始Graph和标签

        /// </summary>

        /// <param name="dir"></param>

        static void ModelFiles(string dir)

        {

            string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";

            modelFile = Path.Combine(dir, "tensorflow_inception_graph.pb");

            labelsFile = Path.Combine(dir, "imagenet_comp_graph_label_strings.txt");

            var zipfile = Path.Combine(dir, "inception5h.zip");

            if (File.Exists(modelFile) && File.Exists(labelsFile))

                return;

            Directory.CreateDirectory(dir);

            var wc = new WebClient();

            wc.DownloadFile(url, zipfile);

            ZipFile.ExtractToDirectory(zipfile, dir);

            File.Delete(zipfile);

        }

    }

    这里需要注意的是由于需要下载初始Graph和标签,而且是google的站点,所以得使用一些特殊手段。

    最终我随便下载了几张图放到binDebugimg

    然后运行程序,首先确保binDebug mp文件夹下有tensorflow_inception_graph.pb及imagenet_comp_graph_label_strings.txt。

    人工智能的魅力非常大,本文只是一个入门,复制上面的代码,你没法训练模型等等操作。所以道路还是很远,需一步一步来。

    更多可以查看 https://github.com/migueldeicaza/TensorFlowSharp 及 https://github.com/tensorflow/models

    参考文档:

    TensorFlow 官网:https://www.tensorflow.org/get_started/

    TensorFlow 中文社区:http://www.tensorfly.cn/

    TensorFlow 官方文档中文版:http://wiki.jikexueyuan.com/project/tensorflow-zh/

  • 相关阅读:
    使用.htaccess文件
    让apache支持htaccess文件
    使用SendMessage进行进程间通信
    【Codeforces Round #505 (Div. 1 + Div. 2) 】
    【Educational Codeforces Round 49 (Rated for Div. 2) 】
    【Codeforces Round #504 (Div. 1 + Div. 2) 】
    【2018 Multi-University Training Contest 10】
    【2018 Multi-University Training Contest 9】
    【2018 Multi-University Training Contest 8】
    【2018 Multi-University Training Contest 7】
  • 原文地址:https://www.cnblogs.com/sumuncle/p/6941958.html
Copyright © 2020-2023  润新知