• Min_25筛


    • (sumlimits_{i=1}^{n}f(i))其中(f)为积性函数。
    • 我们先把烦人的(1)踢掉,接下来都从(2)开始枚举,显然(f(1)=1)
    • (P_x)为第(x)个质数,(mn_x)(x)的最小质因子。
    • (s_{x,y}=sumlimits_{2le ile x,mn_ige P_y}f(i))
    • (g_{n,m}=sumlimits_{2le xle n,is[x] or mn_x>P_m}f(x))
    • (g_{n,m}=g_{n,m-1}(P_m^2>n))
    • (g_{n,m}=g_{n,m-1}-f(P_m) imes [g_{n/P_m,m-1}-sumlimits_{i=1}^{m-1}f(P_i)] (P_m^2le n))
    • 实现 : 对第二维滚动。
    • 如何处理第一维?
    • 回到刚才,求(s_{x,y})
    • (s_{x,y}=sumlimits_{2le ile x,is[i],mn_ige P_y}f(i)+sumlimits_{2le ile x,!is[i],mn_ige P_y}f(i))
    • (s_{x,y}=g_{x,infty}-sumlimits_{i=1}^{y-1}f(P_i)+sumlimits_{yle ple sqrt x,is[p],ege 1,p^{e+1}le x}f(P_p^e) imes s_{x/P_p^e,p+1}+sumlimits_{2le ple sqrt x,is[p],ege 2,p^ele x}f(P_p^{e}))
    • (s_{x,y}=g_{x,infty}-sumlimits_{i=1}^{y-1}f(P_i)+sumlimits_{yle ple sqrt x,is[p],ege 1,p^{e+1}le x}f(P_p^e) imes s_{x/P_p^e,p+1}+f(P_p^{e+1}))
    • 这步需要递归下去,注意到需要的(g)的第一维是(lfloor frac{n}{t} floor)形式的,最多(sqrt n)个,离散化即可。
    • 目前不会证,先抄几个定理上来。
    • (sumlimits_{pge n,is[p]}=Theta(frac{1}{nln n}))

    SP34096 DIVCNTK

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cstdlib>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    #define N 200050
    int vis[N],cnt,id1[N],id2[N],tot;
    ll n,w[N],pri[N];
    ull g[N],K;
    int S;
    int pos(ll x) {return x<=S?id1[x]:id2[n/x];}
    void sieve() {
        int i,j;
        for(i=2;i<N;i++) {
            if(!vis[i]) pri[++cnt]=i;
            for(j=1;j<=cnt&&i*pri[j]<N;j++) {
                vis[i*pri[j]]=1; if(i%pri[j]==0) break;
            }
        }
    }
    ull sf(int x) {return (K+1)*x;}
    ull f(int x) {return (K+1);}
    ull fp(int x,int e) {return K*e+1;}
    ull get_s(ll x,int y) {
        if(x<=1||pri[y]>x) return 0;
        ull ans=g[pos(x)]-sf(y-1);
        int i,e;
        for(i=y;i<=cnt&&pri[i]*pri[i]<=x;i++) {
            ll t=pri[i], tt=t*t;
            for(e=1;tt<=x;e++,t=tt,tt*=pri[i]) {
                ans+=fp(i,e)*get_s(x/t,i+1)+fp(i,e+1);
            }
        }return ans;
    }
    int main() {
        sieve();
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%lld%llu",&n,&K);
            S=sqrt(n); tot=0;
            ll i,lst,j;
            for(i=1;i<=n;i=lst+1) {
                lst=n/(n/i); ll t=n/i; w[++tot]=t; g[tot]=t-1;
                if(t<=S) id1[t]=tot; else id2[n/t]=tot;
            }
            for(i=1;pri[i]<=S;i++) {
                for(j=1;j<=tot&&w[j]>=pri[i]*pri[i];j++) {
                    g[j]-=g[pos(w[j]/pri[i])]-(i-1);
                }
            }
            for(i=1;i<=tot;i++) g[i]*=(K+1);
            printf("%llu
    ",get_s(n,1)+1);
            for(i=1;i<=tot;i++) w[i]=g[i]=0;
        }
    }
    

    LOJ#6053. 简单的函数

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    #define N 200050
    #define mod 1000000007
    ll n,pri[N],w[N],g[N],h[N];
    int S,cnt,tot,vis[N],id1[N],id2[N];
    int pos(ll x) {return x<=S?id1[x]:id2[n/x];}
    ll sum[N];
    ll fp(int p,int e) {return (pri[p]^e)%mod;}
    ll get_s(ll x,int y) {
    	if(x<=1||pri[y]>x) return 0;
    	ll ans=(g[pos(x)]-h[pos(x)]-(sum[y-1]-(y-1)))%mod;
    	if(y==1) ans=(ans+2)%mod;
    	int p,e;
    	for(p=y;p<=cnt&&pri[p]*pri[p]<=x;p++) {
    		ll t=pri[p],tt=t*t;
    		for(e=1;tt<=x;e++,t=tt,tt*=pri[p]) {
    			ans=(ans+fp(p,e)*get_s(x/t,p+1)+fp(p,e+1))%mod;
    		}
    	}
    	return ans;
    }
    int main() {
    	ll i,j;
    	for(i=2;i<N;i++) {
    		if(!vis[i]) pri[++cnt]=i;
    		for(j=1;j<=cnt&&i*pri[j]<N;j++) {
    			vis[i*pri[j]]=1; if(i%pri[j]==0) break;
    		}
    	}
    	for(i=1;i<=cnt;i++) sum[i]=(sum[i-1]+pri[i])%mod;
    	scanf("%lld",&n);
    	ll lst;
    	S=sqrt(n);
    	for(i=1;i<=n;i=lst+1) {
    		lst=n/(n/i);
    		ll t=n/i; w[++tot]=t;
    		if(t<=S) id1[t]=tot; else id2[n/t]=tot;
    		g[tot]=(t+2)%(mod<<1)*((t-1)%(mod<<1))/2%mod; h[tot]=t-1;
    	}
    	for(i=1;pri[i]<=S;i++) {
    		for(j=1;j<=tot&&w[j]>=pri[i]*pri[i];j++) {
    			g[j]=(g[j]-pri[i]*(g[pos(w[j]/pri[i])]-sum[i-1]))%mod;
    			h[j]=(h[j]-(h[pos(w[j]/pri[i])]-(i-1)))%mod;
    		}
    	}
    	printf("%lld
    ",(get_s(n,1)+1+mod)%mod);
    }
    
    

    **反正考了我也不会就不写非模板的题了。**
  • 相关阅读:
    centos7下编译安装python3.7,且与python2.7.5共存
    Linux下的ctrl常用组合键
    命令 docker rm | docker rmi | docker prune 的差异
    docker操作命令大全和后台参数
    解决Linux下ssh登录后出现 报错 Write failed: Broken pipe 的方法
    在centos7 中docker info报错docker bridge-nf-call-iptables is disabled 的解决方法
    Linux下实现不活动用户登录超时后自动登出
    centos下非yum方式安装docker环境
    Git Error:There is no tracking information for the current branch.
    Vim操作:打开文件
  • 原文地址:https://www.cnblogs.com/suika/p/10133858.html
Copyright © 2020-2023  润新知