• Towers CodeForces


    The city of D consists of n towers, built consecutively on a straight line. The height of the tower that goes i-th (from left to right) in the sequence equals hi. The city mayor decided to rebuild the city to make it beautiful. In a beautiful city all towers are are arranged in non-descending order of their height from left to right.

    The rebuilding consists of performing several (perhaps zero) operations. An operation constitutes using a crane to take any tower and put it altogether on the top of some other neighboring tower. In other words, we can take the tower that stands i-th and put it on the top of either the (i - 1)-th tower (if it exists), or the (i + 1)-th tower (of it exists). The height of the resulting tower equals the sum of heights of the two towers that were put together. After that the two towers can't be split by any means, but more similar operations can be performed on the resulting tower. Note that after each operation the total number of towers on the straight line decreases by 1.

    Help the mayor determine the minimum number of operations required to make the city beautiful.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 5000) — the number of towers in the city. The next line contains n space-separated integers: the i-th number hi (1 ≤ hi ≤ 105) determines the height of the tower that is i-th (from left to right) in the initial tower sequence.

    Output

    Print a single integer — the minimum number of operations needed to make the city beautiful.

    Example

    Input
    5
    8 2 7 3 1
    Output
    3
    Input
    3
    5 2 1
    Output
    2
    题意: 给出n个正整数,进行若干个操作,使得序列非减,求最少的操作次数;
                操作:
                        每次可以选择两个相邻的数合并为一个;
     
    解法:
             (1) dp[i][j]表示 前i个整数合并成非减序列的最小代价,且最后一段区间为j->i
             (2) 枚举最后一段合并的区间;

    dp(i)表示使得前i个塔美丽的最小操作次数,sum(i)表示前i座塔的前缀和,last(i)表示使得前i个塔美丽操作次数最小的情况下,最右侧一座塔最小的塔高。

    那么就有状态转移方程:dp(i)=min{dp(j)+i-j+1},sum(i)-sum(j)>=last(j).

    #include <cstdio>
    int dp[5010],sum[5010],last[5010];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i = 1;i <= n;i++){
            int a;
            scanf("%d",&a);
            sum[i] = sum[i-1]+a;
            dp[i] = last[i] = 1<<30;
        }
        for(int i = 1;i <= n;i++){
            for(int j = 0;j < i;j++){
                if(sum[i]-sum[j] >= last[j] && dp[i] >= dp[j]+i-j-1){
                    dp[i] = dp[j]+i-j-1;
                    if(last[i] > sum[i]-sum[j]) last[i] = sum[i]-sum[j];
                }
            }
        }
        printf("%d
    ",dp[n]);
        return 0;
    }
    原文地址http://blog.sina.com.cn/s/blog_140e100580102wkl5.html
  • 相关阅读:
    2018-2019-2 20165215《网络对抗技术》Exp9 :Web安全基础
    2018-2019-2 20165215《网络对抗技术》Exp8 Web基础
    2018-2019-2 20165215《网络对抗技术》Exp7 网络欺诈防范
    2018-2019-2 20165215《网络攻防技术》Exp6 信息搜集与漏洞扫描
    2018-2019-2 20165215《网络对抗技术》Exp5 MSF基础应用
    2018-2019-2 20165215《网络对抗技术》Exp4 恶意代码分析
    2018-2019-2 《网络对抗技术》Exp3 免杀原理与实践 20165215
    2018-2019-2 《网络对抗技术》Exp2 后门原理与应用 20165215
    2018-2019-2 《网络对抗技术》 Exp1 PC平台逆向破解 20165215
    20165220课程设计个人报告——Part4-Cortex M4模块
  • 原文地址:https://www.cnblogs.com/stxy-ferryman/p/7132390.html
Copyright © 2020-2023  润新知