• 二叉查找树--java


    package com.test.tree;
    
    public class BinarySearchTree<T extends Comparable<? super T>> {
        /*定义二叉树的节点*/
        private class BinaryNode<T>{
            public T data;
            public BinaryNode<T> lt;
            public BinaryNode<T> rt;
            
            public BinaryNode(T data) {
                this(data, null, null);
            }
            public BinaryNode(T data, BinaryNode<T> lt, BinaryNode<T> rt) {
                this.data = data;
                this.lt = lt;
                this.rt = rt;
            }
        }
        
        private BinaryNode<T> root; //定义二叉查找树的根节点
        
        public BinarySearchTree(){ //初始化二叉查找树
            root = null;
        }
        
        public void makeEmpty(){ //树清空
            root = null;
        }
        
        public boolean isEmpty(){ //树判空
            return root == null;
        }
        
        public boolean contains(T x){ //判断是否包含某个值
            return contains(root, x);
        }
        public boolean contains(BinaryNode<T> root, T x){
            if(root == null){
                return false;
            }
            int compare = x.compareTo(root.data);
            if(compare == 0){
                return true;
            }else if(compare < 0){
                contains(root.lt, x);
            }else {
                contains(root.rt, x);
            }
            return false;
        }
        
        public T findMin(){ //获得树中最小值
            if(!isEmpty()){
                return findMin(root).data;
            }
            return null;
        }
        public T findMax(){ //获得树中最大值
            if(!isEmpty()){
                return findMax(root).data;
            }
            return null;
        }
        
        public void insert(T data){ //插入数据
            root = insert(data, root);
        }
        
        public void remove(T data){
            root = remove(data, root);
        }
        
        public void printTree(){
            if(root == null){
                System.out.println("empty tree");
            }else{
                printTree(root);
            }
        }
        /*中序遍历*/
        public void printTree(BinaryNode<T> t){
            if(t != null){
                printTree(t.lt);
                System.out.print(t.data+"、");
                printTree(t.rt);
            }
        }
        /**
         * 删除查找树的某个节点,首先用要删除节点的右子树中最小值替换节点值,
         * 再从右子树中删除此节点,递归调用
         * */
        public BinaryNode<T> remove(T data, BinaryNode<T> t){
            if(t == null){
                return t;
            }
            int compare = data.compareTo(t.data);
            
            if(compare < 0){
                //插入值比根节点的值小,插入到左字数
                t.lt = remove(data, t.lt);
            }else if(compare > 0){
                //插入值比根节点的值小,插入到左字数
                t.rt = remove(data, t.rt);
            }else if(t.lt != null && t.rt != null){
                t.data = findMin(t.rt).data; //将右子树中的最小值赋给要删除的节点
                t.rt = remove(t.data, t.rt);
            }else{
                t = t.lt == null? t.rt:t.lt;
            }
            return t;
        }
        public BinaryNode<T> insert(T data, BinaryNode<T> t){
            if(t == null){
                return new BinaryNode<T>(data, null, null);
            }
            int compare = data.compareTo(t.data);
            if(compare < 0){
                //插入值比根节点的值小,插入到左字数
                t.lt = insert(data, t.lt);
            }else if(compare > 0){
                //插入值比根节点的值小,插入到左字数
                t.rt = insert(data, t.rt);
            }else{
            }
            return t;
        }
        public BinaryNode<T> findMin(BinaryNode<T> t){
            if(t == null){
                return t;
            }else if(t.lt == null){ //查找树的左边比节点值小,找到最左边的节点即可
                return t;
            }else{
                return findMin(t.lt);
            }
        }
        
        public BinaryNode<T> findMax(BinaryNode<T> t){
            if(t == null){
                return null;
            }else if(t.rt == null){ //查找树的右边比节点值大,找到最右边的节点即可
                return t;
            }
            return findMax(t.rt);
        }
        
        public static void main(String[] args) {
            BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<Integer>();
            binarySearchTree.insert(8);
            binarySearchTree.insert(4);
            binarySearchTree.insert(6);
            binarySearchTree.insert(3);
            binarySearchTree.insert(14);
            binarySearchTree.insert(10);
            System.out.println("最小值: "+binarySearchTree.findMin());
            System.out.println("最大值: "+binarySearchTree.findMax());
            binarySearchTree.printTree();
            binarySearchTree.remove(8);
            System.out.println();
            binarySearchTree.printTree();
        }
    }
  • 相关阅读:
    网站渗透思路全方面总结 (详细篇)
    使用SQL语句清空数据库所有表的数据
    用微软的压力测试工具进行拒绝服务攻击
    http://jingyan.baidu.com/article/4dc40848e7b69bc8d946f127.html
    DDOS的攻击原理和防护指南
    Nginx下防御HTTP GET FLOOD(CC)攻击
    死链检查工具 Xenu
    again
    https
    SELECT样式,兼容IE6
  • 原文地址:https://www.cnblogs.com/studyDetail/p/7152008.html
Copyright © 2020-2023  润新知