当多维数组的某一列时返回的是一个行向量
>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) >>> X[:, 1] array([2, 6, 10]) % 这里是一个行 >>> X[:, 1].shape % X[:, 1] 的用法完全等同于一个行,而不是一个列, (3, )
如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:
>>>X[:, 1][:, np.newaxis] array([[2], [6], [10]])
如果想实现第二列和第四列的拼接(层叠):
>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]]) % hstack:horizontal stack,水平方向上的层叠 >>>X_sub array([[2, 4] [6, 8] [10, 12]])
当然更为简单的方式还是使用切片:
>> X[:, [1, 3]] array([[ 2, 4], [ 6, 8], [10, 12]])
C# 创建压缩文件
迁移 SQL Server 到 Azure SQL 实战
在 Azure 上部署 Asp.NET Core Web App
linux kill 命令
VS 远程调试 Azure Web App
Azure 基础:自定义 Table storage 查询条件
NSOperation的使用细节 [2]
NSOperation的使用细节 [1]
[翻译] SSKeychain