sklearn线性模型之线性回归
查看官网 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
1.实例化:
a=LinearRegression()
参数默认:
fit_intercept=True, normalize=False, copy_X=True, n_jobs=None
fit_intercept:是否存在截距,默认存在
normalize:标准化开关,默认关闭
copy_X
n_jobs
2.方法:
#输入数据,输入x,y数据,其中参sample_weight数是指每条测试数据的权重,以array形式传入
fit(X, y[, sample_weight]) Fit linear model. # get_params([deep]) Get parameters for this estimator.
#模型预测 predict(X) Predict using the linear model
#计算评分 score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
作用:返回该次预测的系数R2
其中R2 =(1-u/v)。
u=((y_true - y_pred) ** 2).sum() v=((y_true - y_true.mean()) ** 2).sum()
其中可能得到的最好的分数是1,并且可能是负值(因为模型可能会变得更加糟糕)。当一个模型不论输入何种特征值,其总是输出期望的y的时候,此时返回0。
set_params(**params) Set the parameters of this estimator.
3.回归系数与截距
#回归系数 coef_ #截距 intercept_