• [Swift]LeetCode132. 分割回文串 II | Palindrome Partitioning II


    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/9963223.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Given a string s, partition s such that every substring of the partition is a palindrome.

    Return the minimum cuts needed for a palindrome partitioning of s.

    Example:

    Input: "aab"
    Output: 1
    Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.

    给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

    返回符合要求的最少分割次数。

    示例:

    输入: "aab"
    输出: 1
    解释: 进行一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

    148ms
     1 class Solution {
     2     func minCut(_ s: String) -> Int {
     3         var isPalindrome = Array(repeating: Array(repeating: false, count: s.count), count: s.count)
     4         var res = Array(repeating: Int.max, count: s.count)
     5         let sArray = Array(s)
     6         
     7         for i in 0..<s.count {
     8             for j in 0..<i + 1 {
     9                 if sArray[j] == sArray[i] && (i - j < 2 || isPalindrome[j + 1][i - 1]) {
    10                     res[i] = j == 0 ? 0 : min(res[i], res[j - 1] + 1)
    11                     isPalindrome[j][i] = true
    12                 }
    13             }
    14         }
    15         
    16         return res[res.count - 1]
    17     }
    18 }

    148ms

     1 class Solution {
     2     func minCut(_ s: String) -> Int {
     3         if s.isEmpty {
     4             return 0
     5         }
     6         
     7         let count = s.count
     8         var nums = Array(repeating: 0, count: count+1)
     9         for i in 0...count {
    10             nums[i] = count - i - 1
    11         }
    12         var p = Array(repeating: Array(repeating: false, count: count), count: count)
    13         let sArr = Array(s)
    14         
    15         for i in stride(from: count-1, to: -1, by: -1) {
    16             for j in i..<count {
    17                 if sArr[i] == sArr[j] && (j-i<=1 || p[i+1][j-1]) {
    18                     p[i][j] = true
    19                     nums[i] = min(nums[i], nums[j+1] + 1)
    20                 }
    21             }
    22         }
    23         
    24         
    25         return nums[0]
    26     }
    27 }

    156ms

     1 class Solution {
     2     func minCut(_ s: String) -> Int {
     3 
     4         var n = s.count
     5         guard n > 1 else { return 0 }
     6         let s = Array(s)
     7         var p = Array(repeating: Array(repeating: false, count: n), count: n )
     8         var dp = [Int]()
     9         for i in 0...n { dp.append(n-i-1) }
    10         for i in (0...n-1).reversed() {
    11             for j in i...n-1 {
    12                 if s[i] == s[j], (j-i <= 1 || p[i+1][j-1]) {
    13                     p[i][j] = true
    14                     dp[i] = min(dp[i], dp[j+1]+1)
    15                 }
    16             }
    17         }
    18         return dp[0]
    19     }
    20 }

    172ms

     1 class Solution {
     2     func minCut(_ s: String) -> Int {
     3         var res = [Int](repeating: Int.max, count: s.count)
     4         var isPalindrome = Array(repeating: Array(repeating: false, count: s.count), count: s.count)
     5         let sArray = Array(s)
     6         
     7         for i in 0..<s.count {
     8             for j in 0..<i + 1 {
     9                 if sArray[i] == sArray[j] && (i - j < 2 || isPalindrome[j + 1][i - 1]) {
    10                     res[i] = j == 0 ? 0 : min(res[i], res[j - 1] + 1)
    11                     isPalindrome[j][i] = true
    12                 }
    13             }
    14         }
    15         
    16         return res[res.count - 1]
    17     }
    18 }
  • 相关阅读:
    洛谷P3382 【模板】三分法(三分)
    BZOJ2194: 快速傅立叶之二(NTT,卷积)
    UOJ#206. 【APIO2016】Gap(交互,乱搞)
    洛谷P4245 【模板】MTT(任意模数NTT)
    快速数论变换(NTT)小结
    UOJ#34. 多项式乘法(NTT)
    BZOJ3864: Hero meet devil(dp套dp)
    POJ 1094 Sorting It All Out (拓扑排序)
    invesments 第三章 上
    51 EEPROM操作模板
  • 原文地址:https://www.cnblogs.com/strengthen/p/9963223.html
Copyright © 2020-2023  润新知