• [Swift]LeetCode1203. 项目管理 | Sort Items by Groups Respecting Dependencies


    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(let_us_code)
    ➤博主域名:https://www.zengqiang.org
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/11565837.html
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it's equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed.

    Return a sorted list of the items such that:

    • The items that belong to the same group are next to each other in the sorted list.
    • There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item).

    Return any solution if there is more than one solution and return an empty list if there is no solution.

    Example 1:

    Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
    Output: [6,3,4,1,5,2,0,7]
    

    Example 2:

    Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
    Output: []
    Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.
    
    

    Constraints:

    • 1 <= m <= n <= 3*10^4
    • group.length == beforeItems.length == n
    • -1 <= group[i] <= m-1
    • 0 <= beforeItems[i].length <= n-1
    • 0 <= beforeItems[i][j] <= n-1
    • i != beforeItems[i][j]

    公司共有 n 个项目和  m 个小组,每个项目要不没有归属,要不就由其中的一个小组负责。

    我们用 group[i] 代表第 i 个项目所属的小组,如果这个项目目前无人接手,那么 group[i] 就等于 -1。(项目和小组都是从零开始编号的)

    请你帮忙按要求安排这些项目的进度,并返回排序后的项目列表:

    • 同一小组的项目,排序后在列表中彼此相邻。
    • 项目之间存在一定的依赖关系,我们用一个列表 beforeItems 来表示,其中 beforeItems[i] 表示在进行第 i 个项目前(位于第 i 个项目左侧)应该完成的所有项目。

    结果要求:

    如果存在多个解决方案,只需要返回其中任意一个即可。

    如果没有合适的解决方案,就请返回一个 空列表。

    示例 1:

    输入:n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
    输出:[6,3,4,1,5,2,0,7]
    

    示例 2:

    输入:n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
    输出:[]
    解释:与示例 1 大致相同,但是在排序后的列表中,4 必须放在 6 的前面。
    

    提示:

    • 1 <= m <= n <= 3*10^4
    • group.length == beforeItems.length == n
    • -1 <= group[i] <= m-1
    • 0 <= beforeItems[i].length <= n-1
    • 0 <= beforeItems[i][j] <= n-1
    • i != beforeItems[i][j]

    Runtime: 556 ms
    Memory Usage: 28.7 MB
      1 class Solution {
      2     func sortItems(_ n: Int, _ m: Int, _ group: [Int], _ beforeItems: [[Int]]) -> [Int] {
      3         var group = group
      4         var ret:[Int] = [Int]()
      5         //the vector stores the followers of the key which is the group id
      6         var rules_between_groups:[Int:[Int]] = [Int:[Int]]()
      7         //the key is the the group id, the value has similar structure as rules_between_groups
      8         var rules_in_group:[Int:[Int:[Int]]] = [Int:[Int:[Int]]]()
      9         var mm:Int = m
     10         for i in 0..<group.count
     11         {
     12             //asign group ids for the no-group items
     13             if group[i] == -1 {group[i] = mm++}
     14             
     15         }
     16         //parse the following/followed (beforeItems) rules
     17         for i in 0..<beforeItems.count
     18         {
     19             for j in 0..<beforeItems[i].count
     20             {
     21                 if group[beforeItems[i][j]] == group[i]
     22                 {
     23                     let gg:Int = group[i]
     24                     rules_in_group[gg,default:[Int:[Int]]()][beforeItems[i][j],default:[Int]()].append(i)
     25                 }
     26                 else
     27                 {
     28                      rules_between_groups[group[beforeItems[i][j]],default:[Int]()].append(group[i])
     29                 }
     30             }
     31         }
     32         //to remove the duplicated group  id
     33         var groups:Set<Int> = Set<Int>()
     34         //key is the group id, vector stores the items
     35         var items_by_group:[Int:[Int]] = [Int:[Int]]()
     36         for i in 0..<group.count
     37         {
     38             groups.insert(group[i])
     39             items_by_group[group[i],default:[Int]()].append(i)
     40         }
     41         //vector of unique group ids
     42         var vgroup:[Int] = Array(groups)
     43         if !applyRules(&vgroup,&rules_between_groups) {return ret}
     44         for i in 0..<m
     45         {
     46             if !applyRules(&items_by_group[i,default:[Int]()], &rules_in_group[i,default:[Int:[Int]]()])
     47             {
     48                 return ret
     49             }
     50         }
     51         for gg in vgroup
     52         {
     53             for ii in items_by_group[gg,default:[Int]()]
     54             {
     55                 ret.append(ii)
     56             }
     57         }
     58         return ret
     59     }
     60     
     61     func applyRules(_ eles:inout [Int],_ rules:inout [Int:[Int]]) -> Bool
     62     {
     63         //toplogical sort
     64         //id -> indegree number
     65         var indegree:[Int:Int] = [Int:Int]()
     66         for ele in eles
     67         {
     68             indegree[ele] = 0
     69         }
     70         eles.removeAll()
     71         //calculate the indegrees
     72         for valu in rules.values
     73         {
     74             for i in 0..<valu.count
     75             {
     76                 indegree[valu[i],default:0] += 1
     77             }
     78         }
     79         while(indegree.count > 0)
     80         {
     81             let start:Int = eles.count
     82             for (key,val) in indegree
     83             {
     84                 if val == 0
     85                 {
     86                     eles.append(key)
     87                     for aa in rules[key,default:[Int]()]
     88                     {
     89                         indegree[aa,default:0] -= 1
     90                     }
     91                 }
     92             }
     93             let stop:Int = eles.count
     94             for i in start..<stop
     95             {
     96                 indegree[eles[i]] = nil
     97             }
     98             if start == stop
     99             {
    100                 return false
    101             }
    102         }
    103         return true
    104     }
    105 }
    106 
    107 /*扩展Int类,实现自增++、自减--运算符*/
    108 extension Int{
    109     //后缀++:先执行表达式后再自增
    110     static postfix func ++(num:inout Int) -> Int {
    111         //输入输出参数num
    112         let temp = num
    113         //num加1
    114         num += 1
    115         //返回加1前的数值
    116         return temp
    117     }
    118 }
  • 相关阅读:
    学习笔记-级数
    闭包
    superfetch服务到底该不该关闭
    用tor进入“深网”
    浏览器内核
    媒体查询实现响应式布局
    oracle用浏览器界面管理数据库
    angular登录状态检查
    从输入网址后。。。。。。
    原型
  • 原文地址:https://www.cnblogs.com/strengthen/p/11565837.html
Copyright © 2020-2023  润新知