• [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays


    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址: https://www.cnblogs.com/strengthen/p/10744670.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.)

    Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:

    • 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or
    • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

    Example 1:

    Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
    Output: 20
    Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
    

    Example 2:

    Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
    Output: 29
    Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
    

    Example 3:

    Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
    Output: 31
    Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.

    Note:

    1. L >= 1
    2. M >= 1
    3. L + M <= A.length <= 1000
    4. 0 <= A[i] <= 1000

    给出非负整数数组 A ,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L 和 M。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)

    从形式上看,返回最大的 V,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) 并满足下列条件之一:

    • 0 <= i < i + L - 1 < j < j + M - 1 < A.length, 或
    • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

    示例 1:

    输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
    输出:20
    解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
    

    示例 2:

    输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
    输出:29
    解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
    

    示例 3:

    输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
    输出:31
    解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。

    提示:

    1. L >= 1
    2. M >= 1
    3. L + M <= A.length <= 1000
    4. 0 <= A[i] <= 1000

    Runtime: 24 ms
    Memory Usage: 19.1 MB
     1 class Solution {
     2     let N:Int = 1010
     3     var prefix:[Int] = [Int](repeating:0,count:1010)
     4     func maxSumTwoNoOverlap(_ A: [Int], _ L: Int, _ M: Int) -> Int {
     5         var n:Int = A.count
     6         for i in 1...n
     7         {
     8             prefix[i] = prefix[i - 1] + A[i - 1]
     9         }
    10         var ans:Int = 0
    11         var best_l:Int = 0
    12         for i in (L + M)...n
    13         {
    14             best_l = max(best_l, prefix[i - M] - prefix[i - M - L])
    15             ans = max(ans, best_l + prefix[i] - prefix[i - M])
    16         }
    17         var best_m:Int = 0
    18         for i in (L + M)...n
    19         {
    20             best_m = max(best_m, prefix[i - L] - prefix[i - M - L])
    21             ans = max(ans, best_m + prefix[i] - prefix[i - L])
    22         }
    23         return ans        
    24     }
    25 }

    24ms 
     1 class Solution {
     2     func maxSumTwoNoOverlap(_ A: [Int], _ L: Int, _ M: Int) -> Int {
     3         var leftMax = [Int](repeating: 0, count: A.count)
     4         var curMax = 0, curSum = 0
     5         for i in A.indices {
     6             curSum += i < M ?  A[i] : A[i] - A[i-M]
     7             curMax = max(curMax, curSum)
     8             leftMax[i] = curMax
     9         }
    10 
    11         var rightMax = [Int](repeating: 0, count: A.count+1)
    12         var i = A.count - 1, ans = 0
    13         curMax = 0; curSum = 0
    14         while i >= 0 {
    15             curSum += (i + M > A.count - 1) ? A[i] : A[i] - A[i+M]
    16             curMax = max(curMax, curSum)
    17             rightMax[i] = curMax
    18             i -= 1
    19         }
    20 
    21         curSum = 0
    22         for i in A.indices {
    23             curSum += i < L ?  A[i] : A[i] - A[i-L]
    24             let leftMax =  i >= L ? leftMax[i-L] : 0
    25             ans = max(ans, max(leftMax, rightMax[i+1]) + curSum)
    26         }
    27         return ans
    28     }
    29 }

    84ms

     1 class Solution {
     2     func maxSumTwoNoOverlap(_ A: [Int], _ L: Int, _ M: Int) -> Int {
     3         var sumLs = [Int](repeating: 0, count: A.count)
     4         var sumMs = [Int](repeating: 0, count: A.count)
     5         var forwardMaxLs = [Int](repeating: 0, count: A.count)
     6         var backwardMaxLs = [Int](repeating: 0, count: A.count)
     7         var forwardMaxMs = [Int](repeating: 0, count: A.count)
     8         var backwardMaxMs = [Int](repeating: 0, count: A.count)
     9 
    10         var sumL = 0
    11         var sumM = 0
    12         for i in 0..<A.count {
    13             sumL += A[i]
    14             if i >= L - 1 {
    15                 if i >= L {
    16                     sumL -= A[i - L]
    17                 }
    18                 sumLs[i] = sumL
    19             }
    20             sumM += A[i]
    21             if i >= M - 1 {
    22                 if i >= M {
    23                     sumM -= A[i - M]
    24                 }
    25                 sumMs[i] = sumM
    26             }
    27         }
    28         var maxSumL = Int.min
    29         var maxSumM = Int.min
    30         for i in 0..<A.count {
    31             maxSumL = max(maxSumL, sumLs[i])
    32             forwardMaxLs[i] = maxSumL
    33             maxSumM = max(maxSumM, sumMs[i])
    34             forwardMaxMs[i] = maxSumM
    35         }
    36         maxSumL = Int.min
    37         maxSumM = Int.min
    38         for i in (0..<A.count).reversed() {
    39             maxSumL = max(maxSumL, sumLs[i])
    40             backwardMaxLs[i] = maxSumL
    41             maxSumM = max(maxSumM, sumMs[i])
    42             backwardMaxMs[i] = maxSumM
    43         }
    44         var maxSum = Int.min
    45         for l in 0..<A.count {
    46             var m = A.count - 1
    47             while l <= m - M {
    48                 maxSum = max(maxSum, forwardMaxLs[l] + backwardMaxMs[m])
    49                 m -= 1
    50             }
    51         }
    52         for m in 0..<A.count {
    53             var l = A.count - 1
    54             while m <= l - L {
    55                 maxSum = max(maxSum, backwardMaxLs[l] + forwardMaxMs[m])
    56                 l -= 1
    57             }
    58         }
    59         return maxSum
    60     }
    61 }

    108ms

     1 class Solution {
     2     func maxSumTwoNoOverlap(_ A: [Int], _ L: Int, _ M: Int) -> Int {
     3         var prefixSums: [Int] = [0]
     4         var sum = 0
     5         for num in A {
     6             sum += num
     7             prefixSums.append(sum)
     8         }
     9         var res = 0
    10         for lRight in L..<prefixSums.count {
    11             let lSum = prefixSums[lRight] - prefixSums[lRight - L]
    12             for mRight in stride(from: lRight + M, to: prefixSums.count, by: 1) {
    13                 let mSum = prefixSums[mRight] - prefixSums[mRight - M]
    14                 let total = mSum + lSum
    15                 res = max(res, total)
    16             }
    17             
    18             for mRight in stride(from: M, to: lRight - L, by: 1) {
    19                 let mSum = prefixSums[mRight] - prefixSums[mRight - M]
    20                 let total = mSum + lSum
    21                 res = max(res, total)
    22             }
    23         }
    24         return res
    25     }
    26 }
  • 相关阅读:
    Max直接输出gif的脚本
    MaxScript获取材质缩略图的方法
    关于Max导出插件的七七八八
    Max2013脚本工具的乱码问题
    MaxScript中获取Skin的骨骼的方式
    C\C++ Dll >C# >MaxScript通过C#调用C++写的Dll
    Unity3d的着色器
    半夜睡不着,爬起来把shaderX里的车漆搬到了unity3d里
    MaxScript保存剪贴板里的图像
    MaxScript通过Ole操作Phtoshop的范例,将几张图按图层合并为psd
  • 原文地址:https://www.cnblogs.com/strengthen/p/10744670.html
Copyright © 2020-2023  润新知