• [Swift]LeetCode537. 复数乘法 | Complex Number Multiplication


    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/10408940.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Given two strings representing two complex numbers.

    You need to return a string representing their multiplication. Note i2 = -1 according to the definition.

    Example 1:

    Input: "1+1i", "1+1i"
    Output: "0+2i"
    Explanation: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i, and you need convert it to the form of 0+2i. 

    Example 2:

    Input: "1+-1i", "1+-1i"
    Output: "0+-2i"
    Explanation: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i, and you need convert it to the form of 0+-2i. 

    Note:

    1. The input strings will not have extra blank.
    2. The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.

    给定两个表示复数的字符串。

    返回表示它们乘积的字符串。注意,根据定义 i2= -1 。

    示例 1:

    输入: "1+1i", "1+1i"
    输出: "0+2i"
    解释: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i ,你需要将它转换为 0+2i 的形式。
    

    示例 2:

    输入: "1+-1i", "1+-1i"
    输出: "0+-2i"
    解释: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i ,你需要将它转换为 0+-2i 的形式。 
    

    注意:

    1. 输入字符串不包含额外的空格。
    2. 输入字符串将以 a+bi 的形式给出,其中整数 a 和 b 的范围均在 [-100, 100] 之间。输出也应当符合这种形式。

    Runtime: 8 ms
    Memory Usage: 19.9 MB
     1 class Solution {
     2     func complexNumberMultiply(_ a: String, _ b: String) -> String {
     3         var a = a
     4         var b = b
     5         //删除最后一个i
     6         a.remove(at:a.index(before:a.endIndex))
     7         b.remove(at:b.index(before:b.endIndex))
     8         //字符串转数组
     9         let arrA:[String] = a.components(separatedBy:"+")
    10         let arrB:[String] = b.components(separatedBy:"+")
    11         let c1:Complex = Complex(real: Int(arrA[0])!, img: Int(arrA[1])!)
    12         let c2:Complex = Complex(real: Int(arrB[0])!, img: Int(arrB[1])!)
    13         return (c1 * c2).toString
    14     }   
    15 }
    16 
    17 /*复数结构*/
    18 struct Complex {
    19     //实部
    20     var real: Int   
    21     //虚部
    22     var img: Int  
    23     
    24     //将复数转换成字符串。
    25     var toString: String {
    26        return "(real)+(img)i"    
    27     }
    28     
    29     //重载乘法运算符
    30     //设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i
    31     static func *(_ x: Complex,_ y: Complex) -> Complex {
    32         return Complex(real: (x.real * y.real - x.img * y.img), img: (x.img * y.real + x.real * y.img))
    33     }
    34 }

    8ms

     1 final class Solution {
     2     func complexNumberMultiply(_ a: String, _ b: String) -> String {
     3         let a = Array(a)
     4         let b = Array(b)
     5         let (realA, imagA) = splitComplex(a)
     6         let (realB, imagB) = splitComplex(b)
     7         let realC = realA &* realB &- imagA &* imagB
     8         let imagC = realA &* imagB &+ realB &* imagA
     9         return "(realC)+(imagC)i"
    10     }
    11     
    12     @inline(__always) private func splitComplex(_ a: [Character]) -> (Int, Int) {
    13         var i = 0
    14         var j = 0
    15         var realA = 0
    16         var imagA = 0
    17         while i < a.count {
    18             if a[i] == "+" {
    19                 realA = Int(String(a[0..<i]))!
    20                 j = i &+ 1
    21             } else if a[i] == "i" {
    22                 imagA = Int(String(a[j..<i]))!
    23             }
    24             i &+= 1
    25         }
    26         return (realA, imagA)
    27     }
    28 }

    12ms

     1 class Solution {
     2     func complexNumberMultiply(_ a: String, _ b: String) -> String {
     3         let firstParts = a.split(separator: "+")
     4         let secondParts = b.split(separator: "+")
     5 
     6         guard firstParts.count == 2 && secondParts.count == 2 else {
     7             return ""
     8         }
     9 
    10         //  for given a = a+bi, and b = c+di
    11         //  multiplication of a and b can be summurized into ac-bd+(ad+bc)i as i^2 will be -1 as pre-defined
    12         guard let a = Int(firstParts[0]), let b = Int(firstParts[1].replacingOccurrences(of: "i", with: "")), let c = Int(secondParts[0]), let d = Int(secondParts[1].replacingOccurrences(of: "i", with: "")) else {
    13             return ""
    14         }
    15 
    16         return "((a*c)-(b*d))+((a*d)+(b*c))i"
    17     }
    18 }

    16ms

     1 class Solution {
     2     func complexNumberMultiply(_ a: String, _ b: String) -> String {
     3         let strArray1 = a.split(separator: "+")
     4         let strArray2 = b.split(separator: "+")
     5         var resultString = ""
     6         var constantTerm = 0
     7         var ithTerm = 0
     8         let product = -1
     9         
    10         for i in 0..<strArray1.count {
    11             for j in 0..<strArray2.count {
    12                 if i == 0 && j == 0 {
    13                     guard let a = Int(strArray1[i]), let b = Int(strArray2[j]) else { return String() }
    14                     constantTerm = a*b
    15                 } else if i == strArray1.count-1 && j == strArray2.count-1 {
    16                     let str1 = strArray1[i]
    17                     let str2 = strArray2[j]
    18                     let endIndex1 = str1.index(str1.startIndex, offsetBy: str1.count-1)
    19                     let endIndex2 = str2.index(str2.startIndex, offsetBy: str2.count-1)
    20                     guard let constantStr1 = Int(str1[str1.startIndex..<endIndex1]),
    21                     let constantStr2 = Int(str2[str2.startIndex..<endIndex2]) else { return String() }
    22                     let tempConstant = constantStr1 * constantStr2
    23                     constantTerm -= tempConstant
    24                 } else {
    25                     let str1 = strArray1[i]
    26                     let str2 = strArray2[j]
    27                     var constant1 = 0
    28                     var constant2 = 0
    29                     
    30                     if let constantStr1 = Int(str1[str1.startIndex..<str1.endIndex]) {
    31                         constant1 = constantStr1
    32                     } else {
    33                         let endIndex1 = str1.index(str1.startIndex, offsetBy: str1.count-1)
    34                         guard let constantStr1 = Int(str1[str1.startIndex..<endIndex1]) else { return String() }
    35                         constant1 = constantStr1
    36                     }
    37                     
    38                     if let constantStr2 = Int(str2[str2.startIndex..<str2.endIndex]) {
    39                         constant2 = constantStr2
    40                     } else {
    41                         let endIndex1 = str2.index(str2.startIndex, offsetBy: str2.count-1)
    42                         guard let constantStr2 = Int(str2[str2.startIndex..<endIndex1]) else { return String() }
    43                         constant2 = constantStr2
    44                     }
    45                     let tempConstant = constant1*constant2
    46                     ithTerm += tempConstant
    47                 }
    48             }
    49         }
    50         return String(constantTerm)+"+"+String(ithTerm)+"i"
    51     }
    52 }

    20ms

     1 class Solution {
     2     func complexNumberMultiply(_ a: String, _ b: String) -> String {
     3         let avals = a.components(separatedBy: "+")
     4         let bvals = b.components(separatedBy: "+")
     5         
     6         let r = Int(avals[0])!
     7         let t = Int(avals[1].replacingOccurrences(of: "i", with: ""))!
     8         
     9         let s = Int(bvals[0])!
    10         let d = Int(bvals[1].replacingOccurrences(of: "i", with: ""))!
    11         
    12         let v1 = r * s - t * d
    13         let v2 = r * d + t * s
    14         
    15         return "(v1)+(v2)i"
    16     }
    17 }
  • 相关阅读:
    falsk-web 表单
    falsk-web 表单
    falsk-web 表单
    falsk-web 表单
    治理“假货之都”需要大数据打假
    治理“假货之都”需要大数据打假
    治理“假货之都”需要大数据打假
    治理“假货之都”需要大数据打假
    与好友合伙创业,他开店4家,月销售额已超过30万元
    放弃优越的都市生活,他返乡创业带动家乡人民共同致富
  • 原文地址:https://www.cnblogs.com/strengthen/p/10408940.html
Copyright © 2020-2023  润新知