给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上。
示例 1:
输入: [[1,1],[2,2],[3,3]]
输出: 3
解释:
^
|
| o
| o
| o
+------------->
0 1 2 3 4
示例 2:
输入: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出: 4
解释:
^
|
| o
| o o
| o
| o o
+------------------->
0 1 2 3 4 5 6
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
class Solution {
public int maxPoints(Point[] points) {
if(points.length == 0) {
return 0;
}
int[] count = new int[points.length];
for (int i = 0; i < points.length; i++) {
count[i] = 1;
int size = 1;
int same = 0;
HashMap<Integer[], Integer> hashMap = new HashMap<>();
for (int j = 0; j < points.length; j++) {
if(i != j) {
if(points[i].x != points[j].x) {
int dy = points[i].y - points[j].y;
int dx = points[i].x - points[j].x;
int gcd = generateGCD(dy, dx);
if(gcd != 0) {
dy = dy / gcd;
dx = dx / gcd;
}
Integer[] nums = new Integer[2];
nums[0] = dy;
nums[1] = dx;
boolean flag = false;
for (Integer[] array : hashMap.keySet()) {
if(nums[0] == array[0] && nums[1] == array[1]) {
flag = true;
hashMap.put(array, hashMap.get(array) + 1);
}
}
if(!flag) {
hashMap.put(nums, 1);
}
}else {
if(points[i].y == points[j].y) {
same++;
}
size++;
}
}
}
for (Integer[] array : hashMap.keySet()) {
if(hashMap.get(array) + 1 > count[i]) {
count[i] = hashMap.get(array) + 1;
}
}
count[i] += same;
count[i] = Math.max(count[i], size);
}
int maxIndex = 0;
for (int i = 1; i < count.length; i++) {
if(count[i] > count[maxIndex]) {
maxIndex = i;
}
}
return count[maxIndex];
}
// 欧几里得算法:计算最大公约数
private int generateGCD(int x, int y) {
if (y == 0)
return x;
return generateGCD(y, x % y);
}
}
/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
class Solution {
public:
/*
* @param points: an array of point
* @return: An integer
*/
int maxPoints(vector<Point> &points) {
// write your code here
int res = 0;
for(int i=0; i<points.size(); i++){
map<pair<int, int>, int> m;
int common = 1;//记录相同点的个数
for(int j = i+1; j<points.size(); j++){
//处理相同的点
if(points[i].x==points[j].x && points[i].y==points[j].y){
common++;
continue;
}
//处理不同的点
int distance_x = points[i].x - points[j].x;//斜率有正有负
int distance_y = points[i].y - points[j].y;
int d = gcd(distance_x, distance_y);
m[{distance_x/d, distance_y/d}]++;
}
res = max(res, common);//处理相同的点的个数
//处理不同点的个数
map<pair<int, int> ,int>::iterator it;
for(it = m.begin(); it != m.end(); it++){
res = max(res, it->second+common);
}
}
return res;
}
int gcd(int a, int b){//a,b最大公约数
return (b==0) ? a : gcd(b, a%b);
}
};
class Solution {
public:
int maxPoints(vector<Point>& points) {
int count = 0;
for(int i = 0; i < points.size(); i++){
map<pair<int,int>,int> m;
int cnt = 0;
int samePointCnt = 0;
for(int j = i+1; j < points.size(); j++){
if(points[i].x == points[j].x&&points[i].y==points[j].y)
samePointCnt++;
else{
int xDiff = points[i].x - points[j].x;
int yDiff = points[i].y - points[j].y;
int g = gcd(xDiff,yDiff);
xDiff/=g;
yDiff/=g;
cnt = max(cnt,++m[make_pair(xDiff,yDiff)]);
}
}
count = max(count,cnt+samePointCnt+1);
}
return count;
}
private:
int gcd(int a,int b){
if(b == 0)
return a;
else
return gcd(b,a%b);
}
};