• HDU 1402 大数乘法 FFT、NTT


    A * B Problem Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 26874    Accepted Submission(s): 7105


    Problem Description
    Calculate A * B.
     
    Input
    Each line will contain two integers A and B. Process to end of file.

    Note: the length of each integer will not exceed 50000.
     
    Output
    For each case, output A * B in one line.
     
    Sample Input
    1
    2
    1000
    2
     
    Sample Output
    2
    2000
     
    解析   FFT入门题   一个整数可以看成是一个多项式   1234=4*10^0+3*10^1+2*10^2+1*10^3
       数据好像有前导零  要处理一下。。
     
    这个是结构体实现的  跑的比较快的代码
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define all(a) (a).begin(), (a).end()
    #define fillchar(a, x) memset(a, x, sizeof(a))
    #define huan printf("
    ");
    using namespace std;
    typedef long long ll;
    const ll maxn=3e5+20,inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    const double PI = acos(-1.0);
    //复数结构体   c++自带复数容器 用万能头的话会重名
    struct complex
    {
        double r,i;
        complex(double _r = 0.0,double _i = 0.0)
        {
            r = _r; i = _i;
        }
        complex operator +(const complex &b)
        {
            return complex(r+b.r,i+b.i);
        }
        complex operator -(const complex &b)
        {
            return complex(r-b.r,i-b.i);
        }
        complex operator *(const complex &b)
        {
            return complex(r*b.r-i*b.i,r*b.i+i*b.r);
        }
    };
    /*
     * 进行FFT和IFFT前的反转变换。
     * 位置i和 (i二进制反转后位置)互换
     * len必须取2的幂
     */
    void change(complex y[],int len)
    {
        int i,j,k;
        for(i = 1, j = len/2;i < len-1; i++)
        {
            if(i < j)swap(y[i],y[j]);
            //交换互为小标反转的元素,i<j保证交换一次
            //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
            k = len/2;
            while( j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    /*
     * 做FFT
     * len必须为2^k形式,
     * on==1时是DFT,on==-1时是IDFT
     */
    void fft(complex y[],int len,int on)
    {
        change(y,len);
        for(int h = 2; h <= len; h <<= 1)
        {
            complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j+=h)
            {
                complex w(1,0);
                for(int k = j;k < j+h/2;k++)
                {
                    complex u = y[k];
                    complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].r /= len;
    }
    char num1[maxn], num2[maxn];
    complex x1[maxn], x2[maxn];
    int ans[maxn];
    int main() {
        while(scanf("%s%s",num1,num2)!=EOF) {
            memset(ans, 0, sizeof(ans));
            int len = 1, len1 = strlen(num1), len2 = strlen(num2);
            while(len<len1+len2+1) len <<= 1;
            for(int i = 0; i < len1; i++) x1[len1-1-i] = complex((double)(num1[i]-'0'), 0);
            for(int i = len1; i < len; i++) x1[i] = complex(0, 0);
            fft(x1, len, 1);
            for(int i = 0; i < len2; i++) x2[len2-1-i] = complex((double)(num2[i]-'0'), 0);
            for(int i = len2; i < len; i++) x2[i] = complex(0, 0);
            fft(x2, len, 1);
            for(int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
            fft(x1, len, -1);
            for(int i = 0; i < len; i++) ans[i] = (int)(x1[i].r+0.5);
            for(int i = 1; i < len; i++) {
                ans[i] += ans[i-1]/10;
                ans[i-1] %= 10;
            }
            while(len>0 && !ans[len]) len--;
            for(int i = len; i >= 0; i--) printf("%c", ans[i]+'0');
            puts("");
        }
        return 0;
    }
    View Code

    这个是complex实现的 慢一点 这个初始化占内存而且费时 因为把根都提前存好了

    #include <bits/stdc++.h>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define all(a) (a).begin(), (a).end()
    #define fillchar(a, x) memset(a, x, sizeof(a))
    #define huan printf("
    ");
    #define debug(a,b) cout<<a<<" "<<b<<" ";
    using namespace std;
    typedef long long ll;
    const ll maxn=2e5+20,inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    const double PI = acos(-1);
    typedef complex <double> cp;
    char sa[maxn], sb[maxn];
    int n = 1, lena, lenb, res[maxn];
    cp a[maxn], b[maxn], omg[maxn], inv[maxn];
    void init(){
        for(int i = 0; i < n; i++){
            a[i]=b[i]=cp(0,0);
            omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n));
            inv[i] = conj(omg[i]); //conj共轭复数
        }
        memset(res,0,sizeof(res));
    }
    void fft(cp *a, cp *omg){
        int lim = 0;
        while((1 << lim) < n) lim++;
        for(int i = 0; i < n; i++){
            int t = 0;
            for(int j = 0; j < lim; j++)
                if((i >> j) & 1) t |= (1 << (lim - j - 1));
            if(i < t) swap(a[i], a[t]); // i < t 的限制使得每对点只被交换一次(否则交换两次相当于没交换)
        }
        for(int l = 2; l <= n; l *= 2){
            int m = l / 2;
        for(cp *p = a; p != a + n; p += l)
            for(int i = 0; i < m; i++){
                cp t = omg[n / l * i] * p[i + m];
                p[i + m] = p[i] - t;
                p[i] += t;
            }
        }
    }
    int main(){
    
        while(scanf("%s%s", sa, sb)!=EOF){
            n=1,lena = strlen(sa), lenb = strlen(sb);
            while(n < lena + lenb) n *= 2;  //n必须是2的次幂'
            init();
            for(int i = 0; i < lena; i++)
                a[i].real(sa[lena - 1 - i] - '0');
            for(int i = 0; i < lenb; i++)
                b[i].real(sb[lenb - 1 - i] - '0');
            fft(a, omg);
            fft(b, omg);
            for(int i = 0; i < n; i++)
                a[i] *= b[i];
            fft(a, inv);
            for(int i = 0; i < n; i++){
                res[i] += floor(a[i].real() / n + 0.5);
                res[i + 1] += res[i] / 10;
                res[i] %= 10;
            }
            while(n>0&&!res[n])n--;   //抛去前导零
            for(int i = n; i >= 0; i--)
                putchar('0' + res[i]);
            puts("");
        }
        return 0;
    }
    View Code

    这是我改编版本一的代码

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define all(a) (a).begin(), (a).end()
    #define fillchar(a, x) memset(a, x, sizeof(a))
    #define huan printf("
    ");
    using namespace std;
    typedef long long ll;
    typedef complex<double> complexd;
    const ll maxn=3e5+20,inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    const double PI = acos(-1.0);
    /*
     * 进行FFT和IFFT前的反转变换。
     * 位置i和 (i二进制反转后位置)互换
     * len必须取2的幂
     */
    void change(complexd *y,int len)
    {
        int i,j,k;
        for(i = 1, j = len/2; i < len-1; i++)
        {
            if(i < j)
                swap(y[i],y[j]);
            //交换互为小标反转的元素,i<j保证交换一次
            //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
            k = len/2;
            while( j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k)
                j += k;
        }
    }
    /*
     * 做FFT
     * len必须为2^k形式,
     * on==1时是DFT,on==-1时是IDFT
     */
    void fft(complexd *y,int len,int on)
    {
        change(y,len);
        for(int h = 2; h <= len; h <<= 1)
        {
            complexd wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0; j < len; j+=h)
            {
                complexd w(1,0);
                for(int k = j; k < j+h/2; k++)
                {
                    complexd u = y[k];
                    complexd t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0; i < len; i++)
                y[i]=complexd(y[i].real()/len,y[i].imag());
    }
    char num1[maxn], num2[maxn];
    complexd x1[maxn], x2[maxn];
    int ans[maxn];
    int main()
    {
        while(scanf("%s%s",num1,num2)!=EOF)
        {
            memset(ans, 0, sizeof(ans));
            int len = 1, len1 = strlen(num1), len2 = strlen(num2);
            while(len<len1+len2+1)
                len <<= 1;
            for(int i = 0; i < len1; i++)
                x1[len1-1-i] = complexd((double)(num1[i]-'0'), 0);
            for(int i = len1; i < len; i++)
                x1[i] = complexd(0, 0);
            fft(x1, len, 1);
            for(int i = 0; i < len2; i++)
                x2[len2-1-i] = complexd((double)(num2[i]-'0'), 0);
            for(int i = len2; i < len; i++)
                x2[i] = complexd(0, 0);
            fft(x2, len, 1);
            for(int i = 0; i < len; i++)
                x1[i] = x1[i] * x2[i];
            fft(x1, len, -1);
            for(int i = 0; i < len; i++)
                ans[i] = (int)(x1[i].real()+0.5);
            for(int i = 1; i < len; i++)
            {
                ans[i] += ans[i-1]/10;
                ans[i-1] %= 10;
            }
            while(len>0 && !ans[len])
                len--;
            for(int i = len; i >= 0; i--)
                printf("%c", ans[i]+'0');
            puts("");
        }
        return 0;
    }
    View Code

    NTT  模意义下的FFT

    #include<cmath>
    #include<ctime>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<iomanip>
    #include<vector>
    #include<string>
    #include<bitset>
    #include<queue>
    #include<map>
    #include<set>
    using namespace std;
    
    inline int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch<='9'&&ch>='0'){x=10*x+ch-'0';ch=getchar();}
        return x*f;
    }
    void print(int x)
    {if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
    
    const int N=300100,P=998244353;
    
    inline int qpow(int x,int y)
    {
        int res(1);
        while(y)
        {
            if(y&1) res=1ll*res*x%P;
            x=1ll*x*x%P;
            y>>=1;
        }
        return res;
    }
    
    int r[N];
    
    void ntt(int *x,int lim,int opt)
    {
        register int i,j,k,m,gn,g,tmp;
        for(i=0;i<lim;++i)
            if(r[i]<i)
                swap(x[i],x[r[i]]);
        for(m=2;m<=lim;m<<=1)
        {
            k=m>>1;
            gn=qpow(3,(P-1)/m);
            for(i=0;i<lim;i+=m)
            {
                g=1;
                for(j=0;j<k;++j,g=1ll*g*gn%P)
                {
                    tmp=1ll*x[i+j+k]*g%P;
                    x[i+j+k]=(x[i+j]-tmp+P)%P;
                    x[i+j]=(x[i+j]+tmp)%P;
                }
            }
        }
        if(opt==-1)
        {
            reverse(x+1,x+lim);
            register int inv=qpow(lim,P-2);
            for(i=0;i<lim;++i)
                x[i]=1ll*x[i]*inv%P;
        }
    }
    
    int A[N],B[N],C[N];
    
    char a[N],b[N];
    
    int main()
    {
        register int i,lim(1),n;
        while(scanf("%s%s",a,b)!=EOF)
        {
            memset(C,0,sizeof(C));
            memset(A,0,sizeof(A));
            memset(B,0,sizeof(B));
            n=strlen(a);
            for(i=0;i<n;++i) A[i]=a[n-i-1]-'0';
            while(lim<(n<<1)) lim<<=1;
            n=strlen(b);
            for(i=0;i<n;++i) B[i]=b[n-i-1]-'0';
            while(lim<(n<<1)) lim<<=1;
            for(i=0;i<lim;++i)
                r[i]=(i&1)*(lim>>1)+(r[i>>1]>>1);
            ntt(A,lim,1);ntt(B,lim,1);
            for(i=0;i<lim;++i)
                C[i]=1ll*A[i]*B[i]%P;
            ntt(C,lim,-1);
            int len(0);
            for(i=0;i<lim;++i)
            {
                if(C[i]>=10)
                    len=i+1,
                    C[i+1]+=C[i]/10,C[i]%=10;
                if(C[i]) len=max(len,i);
            }
            while(C[len]>=10)
                C[len+1]+=C[len]/10,C[len]%=10,len++;
            for(i=len;~i;--i)
                putchar(C[i]+'0');
            puts("");
        }
        return 0;
    }
    View Code

    FFT原理学习   https://zhuanlan.zhihu.com/p/40505277?utm_source=qq&utm_medium=social&utm_oi=854653490251829248

            https://www.cnblogs.com/RabbitHu/p/FFT.html

  • 相关阅读:
    001:大盗阿福
    1183 编辑距离(51NOD)(dp)
    1134 最长递增子序列(容易TLE)
    1181 质数中的质数(质数筛法)(51NOD基础)
    列表行拖拽效果
    10个提升iOS开发效率的必用工具
    无需转化直接使用ESD映像文件安装系统简明教程
    Objective-C中变量采用@property的各个属性值的含义
    struts接收参数方式
    c# 执行js的方法
  • 原文地址:https://www.cnblogs.com/stranger-/p/9562964.html
Copyright © 2020-2023  润新知