建图方式:
S->同意 ,反对->T
对于每一对好友连容量为1的边
#include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
const int MAXN = 3e2+7;
const int MAXM = 2e5+7;
int n, m, s, t, dep[MAXN], maxflow;
struct Edge {
int v, w, next;
} G[MAXM];
int tot = 1, head[MAXN], cur[MAXN];
inline void add(int u, int v, int w) {
G[++tot].v=v, G[tot].w=w, G[tot].next=head[u];
head[u]=tot;
}
bool bfs(int s, int t) {
memset(dep, 0x7f, sizeof dep);
memcpy(cur+1, head+1, n*4+8);
queue<int>q;
while(!q.empty()) q.pop();
dep[s] = 0;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i; i = G[i].next) {
int v = G[i].v, w = G[i].w;
if (dep[v] > inf && w) {
dep[v] = dep[u] + 1;
if (v == t) return 1;
q.push(v);
}
}
}
return dep[t] < inf;
}
int dfs(int u, int t, int limit) {
if (u == t || !limit) return limit;
int flow = 0, f;
for(int i = cur[u]; i; i = G[i].next) {
cur[u] = i;
int v = G[i].v, w = G[i].w;
if (dep[v] == dep[u] + 1 && (f = dfs(v, t, min(w, limit)))) {
flow += f;
limit -= f;
G[i].w -= f;
G[i^1].w += f;
if (!limit) break;
}
}
return flow;
}
void dinic(int s, int t) {
while(bfs(s, t)) maxflow += dfs(s, t, inf);
}
int main(void) {
// memset(head, -1, sizeof head);
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) {
scanf("%d", &s);
if (s) add(n+1, i, 1), add(i, n+1, 0);
else add(i, n+2, 1), add(n+2, i, 0);
}
for(int i = 1; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v, 1), add(v, u, 1);
// add(u, v, 0), add(v, u, 0);//加不加都行,因为不会退流
}
dinic(n+1, n+2);
printf("%d", maxflow);
return 0;
}