题意:求每个节点子树众数和(比如3和5都是众数 答案是8)
树上启发式合并可以解决一些无修改的子树询问
先solve轻儿子,后solve重儿子,如果该节点是轻儿子,然后重新统计轻儿子的贡献,更新该节点的答案,如果该节点是轻儿子,那么将该节点的贡献删除,回溯(其实就是保留了重儿子的答案)
由于轻重链剖分一个点到根节点至多有(O(logn))条轻边的性质,所以每个节点最多被重复遍历(O(logn))次,总复杂度(O(nlogn))
int cnt[MAXN], son[MAXN], siz[MAXN], head[MAXN], c[MAXN], n, m;
bool vis[MAXN];
struct Edge {
int v, next;
}G[MAXN<<1];
inline void add(int u, int v) {
static int tot = 0;
G[++tot] = (Edge) {v, head[u]}; head[u] = tot;
}
ll cur, ans[MAXN];
int Max;
inline void dfs(int u, int fa) {
siz[u] = 1;
for(int i = head[u]; i; i = G[i].next) {
int v = G[i].v;
if (v == fa) continue;
dfs(v, u); siz[u] += siz[v];
if (siz[v] >= siz[son[u]]) son[u] = v;
}
}
inline void update(int u, int fa, int V) {
cnt[c[u]] += V;
if (cnt[c[u]] > Max) Max = cnt[c[u]], cur = c[u];
else if (cnt[c[u]] == Max) cur += c[u];
for(int i = head[u]; i; i = G[i].next) {
int v = G[i].v;
if (v == fa || vis[v]) continue;
update(v, u, V);
}
}
inline void solve(int u, int fa, bool is) {
for(int i = head[u]; i; i = G[i].next) {
int v = G[i].v;
if (v == fa || v == son[u]) continue;
solve(v, u, 0);
}
if (son[u]) solve(son[u], u, 1), vis[son[u]] = 1;
update(u, fa, 1);
ans[u] = cur;
vis[son[u]] = 0;
if (!is) {
update(u, fa, -1);
Max = cur = 0;
}
}
int main() {
#ifdef LOCAL_DEBUG
// freopen("data.in", "r", stdin), freopen("data.out", "w", stdout);
Dbg = 1; uint tim1 = clock();
#endif
in, n;
lop(i,1,n) in, c[i];
lop(i,1,n-1) {
int u, v; in, u, v; add(u, v), add(v, u);
}
dfs(1, 0);
solve(1, 0, 1);
lop(i,1,n) out, ans[i], ' ';
#ifdef LOCAL_DEBUG
fprintf(stderr, "
time:%.5lfms", (clock() - tim1) / (1.0 * CLOCKS_PER_SEC) * 1000);
#endif
return 0;
}