ylbtech-几何-莱罗三角形:百科 |
莱洛三角形,也译作勒洛三角形或弧三角形、圆弧三角形,是除了圆形以外,最简单易懂的勒洛多边形,一个定宽曲线 。其作法为先画正三角,然后分别以三个顶点为圆心,边长长为半径画弧所得到的三角形。
1.返回顶部 |
1、
- 中文名:莱洛三角形
- 别 名:勒洛三角形,弧三角形
- 命名者:Franz Reuleaux
- 类 型:曲边三角形
做图法
面积关系
性质
将一个曲线图放在两条平行线中间,使之与这两平行线相切,则可以做到:无论这个曲线图如何运动,只要它还是在这两条平行线内,就始终与这两条平行线相切,但中心点会形成一个圆。这个定义由Franz Reuleaux,一个十九世纪的德国工程师命名。
应用
2、下图为此类三角形旋转的一个例子,因为这个特点,该类三角形可用于做运输的轮子,搬东西稳定(但由于制作技术要求高,边角不耐磨等原因不常用)。
还有一个用圆形而不用莱洛三角做轮子的原因:
用圆作车轮是人类文明发展过程中选择的结果,不仅由于圆的定宽性,还由于圆是最常见的图形之一,比如太阳,月亮等,也是所有定宽曲线中最简单的。圆形较为容易加工。而且定宽的稳定性较好,即使圆形不算正规,还会保持较好的定宽性。
人们将车轮做成圆形,是利用了圆的一个重要性质:将一个圆放在两条平行线中间,使之与这两平行线相切。则可以做到:无论这个圆如何运动,它还是在这两条平行线内,并且始终与这两条平行线相切。此即圆的定宽性质,具有类似圆的定宽性质的曲线称为定宽曲线。
另外,圆形还具有一条重要的性质,几何中心的稳定性,圆的中轴(过圆心的轴)在圆转动的时候是保持高度不变的,始终是地面往上半径的高度。
试想用上面的莱洛三角形,它的几何中心是不稳定的,随着图形的转动上下跳动,这样是不适合做车轮的。
基于上诉特点,圆形的车轮是应用最广泛的。
3、莱洛三角形形状的钻头可钻出四角为圆弧的正方形的孔。
2、
2.返回顶部 |
3.返回顶部 |
4.返回顶部 |
5.返回顶部 |
1、
2、
6.返回顶部 |
作者:ylbtech 出处:http://ylbtech.cnblogs.com/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。 |