protobuf.js的结构和webpack的加载之后的结构很相似。这样的模块化组合是个不错的结构方式。1个是适应了不同的加载方式,2个模块直接很独立。webpack的功能更全一点。但如果自己封装js库这样够用了。而且模块对外统一接口 module.exports。这和node很像。
(function(global, undefined) { "use strict"; (function prelude(modules, cache, entries) { function $require(name) { var $module = cache[name]; //没有就去加载 if (!$module) modules[name][0].call($module = cache[name] = { exports: {} }, $require, $module, $module.exports); return $module.exports; } //曝光成全局 var proto = global.proto = $require(entries[0]); // AMD if (typeof define === "function" && define.amd) { define(["long"], function(Long) { if (Long && Long.isLong) { proto.util.Long = Long; proto.configure(); } }); return proto; } //CommonJS if (typeof module === "object" && module && module.exports) module.exports = proto; }) //传参 ({ 1: [function (require, module, exports) { function first() { console.log("first"); } module.exports = first; }, {}], 2: [function(require, module, exports) { function second() { console.log("second"); } module.exports = second; }], 3: [function (require, module, exports) { var proto = {}; proto.first = require(1); proto.second = require(2); proto.build = "full"; module.exports = proto; }] }, {}, [3]); })(typeof window==="object"&&window||typeof self==="object"&&self||this)
在处理超过16位的整形就得使用Long.js了。 主要是fromString和toString。
function fromString(str, unsigned, radix) { if (str.length === 0) throw Error('empty string'); if (str === "NaN" || str === "Infinity" || str === "+Infinity" || str === "-Infinity") return ZERO; if (typeof unsigned === 'number') { // For goog.math.long compatibility radix = unsigned, unsigned = false; } else { unsigned = !!unsigned; } radix = radix || 10; if (radix < 2 || 36 < radix) throw RangeError('radix'); var p; if ((p = str.indexOf('-')) > 0) throw Error('interior hyphen'); else if (p === 0) { return fromString(str.substring(1), unsigned, radix).neg(); } // Do several (8) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = fromNumber(pow_dbl(radix, 8)); var result = ZERO; for (var i = 0; i < str.length; i += 8) { var size = Math.min(8, str.length - i), value = parseInt(str.substring(i, i + size), radix); if (size < 8) { var power = fromNumber(pow_dbl(radix, size)); result = result.mul(power).add(fromNumber(value)); } else { result = result.mul(radixToPower); result = result.add(fromNumber(value)); } } result.unsigned = unsigned; return result; }
fromstring的思路是把字符串8位一个截取。然后转成Long型(高位,地位,符号位) 加起来。最后是一个Long型。 4294967296 是2的32次方。每次操作之前都会有一个基数的操作 mul(radixToPower)或者mul(power)这两者都是保证result的位数是正确的。
比如{low:123} 和{low:1} 相加之前,先要让{low:123}乘以10,得到{low:1230}再与{low:1}进行位操作。因为第一个是高位,不能直接相加。
function fromBits(lowBits, highBits, unsigned) { return new Long(lowBits, highBits, unsigned); }
fromBits 即转为Long对象。value%4294967296 得到低位。/得到高位。结果通过位移合并起来。mul是bit的乘法,add是bit的加法。 原理是讲一个64位的拆成四段。分别16位。this.low左移16位 就得到 low的32-17位是啥。 然后和addend对象的同位相加
最后的合并是通过|运算。位移之后再还原确实很巧妙。一时看上去都不大理解。
LongPrototype.add = function add(addend) { if (!isLong(addend)) addend = fromValue(addend); // Divide each number into 4 chunks of 16 bits, and then sum the chunks. var a48 = this.high >>> 16; var a32 = this.high & 0xFFFF; var a16 = this.low >>> 16; var a00 = this.low & 0xFFFF; var b48 = addend.high >>> 16; var b32 = addend.high & 0xFFFF; var b16 = addend.low >>> 16; var b00 = addend.low & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 + b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 + b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 + b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 + b48; c48 &= 0xFFFF; return fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned); };
>>>和>>有什么区别??。
toString
LongPrototype.toString = function toString(radix) { radix = radix || 10; if (radix < 2 || 36 < radix) throw RangeError('radix'); if (this.isZero()) return '0'; if (this.isNegative()) { // Unsigned Longs are never negative if (this.eq(MIN_VALUE)) { // We need to change the Long value before it can be negated, so we remove // the bottom-most digit in this base and then recurse to do the rest. var radixLong = fromNumber(radix), div = this.div(radixLong), rem1 = div.mul(radixLong).sub(this); return div.toString(radix) + rem1.toInt().toString(radix); } else return '-' + this.neg().toString(radix); } // Do several (6) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned), rem = this; var result = ''; while (true) { var remDiv = rem.div(radixToPower), intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0, digits = intval.toString(radix); rem = remDiv; if (rem.isZero()) return digits + result; else { while (digits.length < 6) digits = '0' + digits; result = '' + digits + result; } } };
也是sub之后拼出来的。也就是fromstring的反向操作。