Description
You are given a permutation of the numbers 1, 2, ..., n and m pairs of positions (aj, bj).
At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get?
Let p and q be two permutations of the numbers 1, 2, ..., n. p is lexicographically smaller than the q if a number 1 ≤ i ≤ n exists, sopk = qk for 1 ≤ k < i and pi < qi.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the length of the permutation p and the number of pairs of positions.
The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.
Each of the last m lines contains two integers (aj, bj) (1 ≤ aj, bj ≤ n) — the pairs of positions to swap. Note that you are given apositions, not the values to swap.
Output
Print the only line with n distinct integers p'i (1 ≤ p'i ≤ n) — the lexicographically maximal permutation one can get.
Sample Input
9 6
1 2 3 4 5 6 7 8 9
1 4
4 7
2 5
5 8
3 6
6 9
7 8 9 4 5 6 1 2 3
/* 我本来还以为每种操作只能操作一次,结果可以操作无穷次 “At each step you can choose a pair from the given positions and swap the numbers in that positions.” 怪我英语不好,┗( T﹏T )┛ DFS或并查集求连通块。 把每一条允许交换的位置看做是图中的一条边,画图会发现:一个连通块内的那些位置是可以任意交换的。 因此,只需找出连通块,每一块内的值从大到小排序就行。 */ #include <iostream> #include<cstdio> #include<vector> #include<algorithm> using namespace std; int team[1000005],teampos[1000005],a[1000005]; bool vis[1000005]; int cnt,n,m; vector<int> s[1000005]; void dfs(int k) { team[++cnt]=a[k]; teampos[cnt]=k; vis[k]=1; for(int i=0;i<s[k].size();i++) if (!vis[s[k][i]]) dfs(s[k][i]); } bool cmp(int a,int b) { return a>b; } int main() { while(~scanf("%d%d",&n,&m)) { for(int i=1;i<=n;i++) {scanf("%d",&a[i]);vis[i]=0;s[i].clear();} for(int i=1;i<=m;i++) { int x,y; scanf("%d%d",&x,&y); s[x].push_back(y); s[y].push_back(x); } for(int i=1;i<=n;i++) if (!vis[i]) { cnt=0; dfs(i); sort(teampos+1,teampos+cnt+1); sort(team+1,team+cnt+1,cmp); for(int j=1;j<=cnt;j++) a[teampos[j]]=team[j]; } for(int i=1;i<n;i++) printf("%d ",a[i]); printf("%d ",a[n]); } return 0; }