题:http://acm.hdu.edu.cn/showproblem.php?pid=2243
题意:给出m个模式串,求长度小于n的且存在模式串的字符串数有多少个(a~z)
分析:我们反着来,用总的减去不包含的,总的很容易想到,每个位置都有26个选择,所以是Σ1n26i 不包含的 这里 有解决恰好长度为n的方法,但这里要小于等于n的全部;
其实解决方法类似,将上述的解题方法中的方案矩阵设为A,那么我们构造如下矩阵(含解释)
#include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #include<queue> #include<cmath> using namespace std; typedef unsigned long long ll; const int N=1e3+3; const int maxn=26; struct ac{ int trie[N][maxn],fail[N]; ll A[N][N],T[N][N],tmp[N][N]; bool end[N]; int root,tot; int newnode(){ for(int i=0;i<maxn;i++) trie[tot][i]=-1; end[tot++]=0; return tot-1; } void init(){ memset(A,0,sizeof(A)); memset(end,false,sizeof(end)); tot=0; root=newnode(); } void insert(char buf[]){ int now=root,len=strlen(buf); for(int i=0;i<len;i++){ if(trie[now][buf[i]-'a']==-1) trie[now][buf[i]-'a']=newnode(); now=trie[now][buf[i]-'a']; } end[now]=true; } void getfail(){ queue<int>que; while(!que.empty()) que.pop(); fail[root]=root; for(int i=0;i<maxn;i++){ if(trie[root][i]==-1) trie[root][i]=root; else{ fail[trie[root][i]]=root; que.push(trie[root][i]); } } while(!que.empty()){ int now=que.front(); que.pop(); if(end[fail[now]]) end[now]=true; for(int i=0;i<maxn;i++){ if(trie[now][i]!=-1){ fail[trie[now][i]]=trie[fail[now]][i]; que.push(trie[now][i]); } else trie[now][i]=trie[fail[now]][i]; } } } void getA(){ for(int i=0;i<tot;i++) for(int j=0;j<maxn;j++) if(!end[i]&&!end[trie[i][j]]){ A[i][trie[i][j]]++; } ///构造所说的前缀和的矩阵 for(int i=0;i<=tot;i++) A[i][tot]=1; } void mul(ll a[][N],ll b[][N],int len){ for(int i=0;i<len;i++) for(int j=0;j<len;j++){ tmp[i][j]=0; for(int k=0;k<len;k++) tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j]); } for(int i=0;i<len;i++) for(int j=0;j<len;j++) a[i][j]=tmp[i][j]; } void solve(ll n,ll len){///这里的俩个参量要是换成int会t。。。。 memset(T,0,sizeof(T)); for(int i=0;i<len;i++) T[i][i]=1; while(n){ if(n&1) mul(T,A,len); mul(A,A,len); n>>=1; } } }AC; char s[10]; int main(){ int n,m; while(scanf("%d%d",&n,&m)!=EOF){ AC.init(); for(int i=1;i<=n;i++){ scanf("%s",s); AC.insert(s); } AC.getfail(); // cout<<AC.tot<<"!!"<<endl; AC.getA(); AC.solve(m,AC.tot+1);///不包含的 ll ans=0; for(int i=0;i<=AC.tot;i++) ans=(ans+AC.T[0][i]); ///全部的 AC.A[0][0]=26,AC.A[0][1]=1; AC.A[1][0]=0, AC.A[1][1]=1; AC.solve(m+1,2); ///全部-不包含的 printf("%I64u ",AC.T[0][1]-ans); } return 0; }