• 【洛谷P4723】【模板】—线性递推(多项式取模)


    传送门


    考虑说要求一个
    an=i=1kanifia_n=sum_{i=1}^{k}a_{n-i}f_i

    写成矩阵的形式就是

    An=An1F=A0FnA_n=A_{n-1}F=A_0F^n

    实际上FnF^n最后就是一个长度为kk的向量
    满足an=i=1kciaia_n=sum_{i=1}^{k}c_ia_i
    这样的形式

    CayleyHamiltonCayley-Hamilton定理可以得到FF的特征多项式

    g(λ)=det(λIF)=λkf1λk1f2λk2fk=0g(λ)=det(λI-F)=λ^k-f_{1}λ^{k-1}-f_{2}λ^{k-2}……-f_k=0

    而且gg最高次只有k1k-1

    所以我们可以倍增多项式取模O(klogklogn)O(klog_klog_n)求出Fn%gF^n\% g
    由于g(λ)=0g(λ)=0,所以Fn%g=FnF^n\% g=F^n

    然后就完了

    注意读入的数最小有1e9-1e9

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    #define poly vector<int>
    #define bg begin
    #define int long long
    cs int mod=998244353,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    inline void chemx(ll &a,ll b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    cs int N=128005,C=19;
    poly w[C+1];
    inline void init_w(){
    	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
    	int wn=ksm(G,(mod-1)/(1<<C));
    	w[C][0]=1;
    	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
    	for(int i=C-1;i;i--)
    	for(int j=0;j<(1<<(i-1));j++)
    	w[i][j]=w[i+1][j<<1];
    }
    int rev[N<<2];
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int mid=1,l=1;mid<lim;mid<<=1,l++)
    	for(int i=0;i<lim;i+=(mid<<1))
    		for(int j=0,a0,a1;j<mid;j++)
    			a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),
    			f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    	if(kd==-1&&(reverse(f.bg()+1,f.bg()+lim),1))
    		for(int inv=ksm(lim,mod-2),i=0;i<lim;i++)Mul(f[i],inv);
    }
    inline poly operator +(poly a,poly b){
    	poly c;int lim=max(a.size(),b.size());c.resize(lim);
    	a.resize(lim),b.resize(lim);
    	for(int i=0;i<lim;i++)c[i]=add(a[i],b[i]);return c;
    }
    inline poly operator -(poly a,poly b){
    	poly c;int lim=max(a.size(),b.size());c.resize(lim);
    	a.resize(lim),b.resize(lim);
    	for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
    }
    inline poly operator *(poly a,int b){
    	for(int i=0;i<a.size();i++)Mul(a[i],b);return a;
    }
    inline poly operator /(poly a,int b){
    	for(int i=0,inv=ksm(b,mod-2);i<a.size();i++)Mul(a[i],inv);
    	return a;
    }
    inline poly operator *(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	if(deg<=128){
    		poly c(deg,0);
    		for(int i=0;i<a.size();i++)
    		for(int j=0;j<b.size();j++)
    			Add(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(lim<deg)lim<<=1;init_rev(lim);
    	a.resize(lim),ntt(a,lim,1);
    	b.resize(lim),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(poly a,int deg){
    	poly c,b(1,ksm(a[0],mod-2));
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		init_rev(lim);
    		c=a,c.resize(lim>>1);
    		c.resize(lim),ntt(c,lim,1);
    		b.resize(lim),ntt(b,lim,1);
    		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    		ntt(b,lim,-1),b.resize(lim>>1);
    	}b.resize(deg);return b;
    }
    inline poly operator /(poly a,poly b){
    	int lim=1,deg=(int)a.size()-(int)b.size()+1;
    	reverse(a.bg(),a.end());
    	reverse(b.bg(),b.end());
    	while(lim<=deg)lim<<=1;
    	b=Inv(b,lim),b.resize(deg);
    	a=a*b,a.resize(deg);
    	reverse(a.bg(),a.end());
    	return a;
    }
    inline poly operator %(poly a,poly b){
    	int deg=(int)a.size()-(int)b.size()+1;
    	if(deg<0)return a;
    	poly c=a-(a/b)*b;
    	c.resize(b.size()-1);
    	return c;
    }
    int n,m,a[N];
    poly f,g;
    signed main(){
    	init_w();
    	n=read(),m=read();
    	f.resize(m+1);
    	for(int i=1;i<=m;i++)f[m-i]=read(),f[m-i]=mod-(f[m-i]%mod+mod)%mod;
    	f[m]=1;
    	for(int i=0;i<m;i++)a[i]=read(),a[i]=(a[i]%mod+mod)%mod;
    	poly res,g;
    	res.resize(m+1),res[0]=1;
    	g.resize(m+1),g[1]=1;
    	for(;n;n>>=1,g=g*g%f){if(n&1)res=res*g%f;}
    	int anc=0;
    	for(int i=0;i<res.size();i++)Add(anc,mul(res[i],a[i]));
    	cout<<anc;
    }
    
  • 相关阅读:
    stone brook Introduction to Mathematical Statistics
    mongodb python
    CodesBay
    人机交互的本质是画图
    Latex模版–Review and Response Letters
    mongo with python
    OpenStack架构学习与解析
    Python类方法
    python装饰器
    java.sql.SQLException: Io 异常: Connection reset by peer: socket write error
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328685.html
Copyright © 2020-2023  润新知