• 【LOJ #572】【LibreOJ Round #11】—Misaka Network 与求和(min_25筛+杜教筛)


    传送门

    首先可以随便莫反一波,可以得到

    ans=d=1nf(d)ki=1ndj=1ndgcd(i,j)=1ans=sum_{d=1}^{n}f(d)^ksum_{i=1}^{frac n d}sum_{j=1}^{frac n d}gcd(i,j)=1

    ϕphi的定义可以得到
    ans=d=1nf(d)kg(nd)ans=sum_{d=1}^{n}f(d)^kg(frac n d)
    其中g(n)=i=1n2ϕ(i)1g(n)=sum_{i=1}^{n}2phi(i)-1

    次大质因子的kk次幂可以类似SanrdSanrd的做法用min25min_{25}

    后面可以用杜教筛筛一下

    #include<bits/stdc++.h>
    using namespace std;
    const int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ob==ib)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
        char ch=gc();
        int res=0,f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    #define ll long long
    #define re register
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define pb push_back
    #define cs const
    #define bg begin
    #define uint unsigned int
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    inline uint ksm(uint x,int b){
    	uint res=1;
    	for(;b;b>>=1,x=x*x)if(b&1)res=res*x;
    	return res;
    }
    cs int N=50004;
    int n,k;
    namespace F{
    	uint f1[N],f2[N],pt[N];
    	int lim,pr[N],tot;
    	inline void init(int n){
    		lim=sqrt(n),tot=0;
    		for(int i=1;i<=lim;i++)f1[i]=i-1,f2[i]=n/i-1;
    		for(int p=2;p<=lim;p++){
    			if(f1[p]==f1[p-1])continue;
    			pr[++tot]=p;
    			for(int i=1;i<=lim/p;i++)f2[i]-=(f2[i*p]-f1[p-1]);
    			for(int i=lim/p+1;1ll*i*p*p<=n&&i<=lim;i++)f2[i]-=(f1[n/i/p]-f1[p-1]);
    			for(int i=lim;i>=1ll*p*p;i--)f1[i]-=(f1[i/p]-f1[p-1]);
    		}
    		for(int i=1;i<=tot;i++)pt[i]=ksm(pr[i],k);
    	}
    	inline uint F(int x){
    		return x>lim?f2[n/x]:f1[x];
    	}
    	unordered_map<int,uint> mp[N];
    	inline uint sieve(int res,int pos){
    		if(mp[pos].count(res))return mp[pos][res];
    		uint anc=0;
    		if(res<pr[pos])return 0;
    		for(int i=pos;i<=tot;i++){
    			if(1ll*pr[i]*pr[i]>res)break;
    			for(ll now=pr[i],xs=1;now<=res;now*=pr[i],xs++)
    			if(1ll*now*pr[i]<=res)anc+=sieve(res/now,i+1),anc+=pt[i]*(F(res/now)-i+1);
    		}
    		return mp[pos][res]=anc;
    	}
    	inline uint query(int x){
    		return sieve(x,1)+F(x);
    	}
    }
    cs int mod=19260817;
    struct Map{
    	int key[mod];uint val[mod];
    	Map(){memset(key,-1,sizeof(key));}
    	int posit(int x)cs{
    		int h=x%mod;
    		while(key[h]!=-1&&key[h]!=x)h=h==mod-1?0:h+1;
    		return h;
    	}
    	uint &operator[](int x){
    		int p=posit(x);
    		if(key[p]==-1){
    			key[p]=x,val[p]=0;
    		}
    		return val[p];
    	}
    	inline bool count(int x)cs{return key[posit(x)]==x;}
    };
    namespace G{
    	cs int N=2000006;
    	Map mp;
    	uint phi[N],pr[N],tot,vis[N];
    	inline void init(){
    		cs int len=N-6;
    		phi[1]=1;
    		for(int i=2;i<=len;i++){
    			if(!vis[i])pr[++tot]=i,phi[i]=i-1;
    			for(int j=1;j<=tot&&i*pr[j]<=len;j++){
    				vis[i*pr[j]]=1;
    				if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
    				phi[i*pr[j]]=phi[i]*phi[pr[j]];
    			}
    		}
    		for(int i=1;i<=len;i++)phi[i]+=phi[i-1];
    	}
    	inline uint S(uint x){
    		return (uint)(1ll*x*(x+1)/2);
    	}
    	inline uint query(int x){
    		if(x<=N-6)return phi[x];
    		if(mp.count(x))return mp[x];
    		uint res=S(x);
    		for(int i=2,nxt;i<=x;i=nxt+1){
    			nxt=x/(x/i);
    			res-=(nxt-i+1)*query(x/i);
    		}
    		return mp[x]=res;
    	}
    }
    uint res=0;
    int main(){
    	n=read(),k=read();
    	F::init(n);G::init();
    	for(int i=1,nxt;i<=n;i=nxt+1){
    		nxt=n/(n/i);
    		uint a=G::query(n/i)*2-1,b=(F::query(nxt)-F::query(i-1));
    		res+=a*b;
    	}
    	cout<<res;
    }
    
  • 相关阅读:
    新浪微博热门话题(30 分)(字符串)
    新浪微博热门话题(30 分)(字符串)
    任务调度的合理性 (25)拓扑排序
    任务调度的合理性 (25)拓扑排序
    PTA 银行排队问题之单队列多窗口服务(25 分)
    PTA 银行排队问题之单队列多窗口服务(25 分)
    PTA 畅通工程之最低成本建设问题(30 分)(最小生成树 krusal)
    PTA 畅通工程之最低成本建设问题(30 分)(最小生成树 krusal)
    PTA 最大子列和问题(10 分)
    PTA 是否同一棵二叉搜索树(25 分)
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328589.html
Copyright © 2020-2023  润新知