• 【CSP-S 2019模拟题解】


    T1:

    对每个TT预处理一下到其他TT的距离然后状压dpdp即可

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define pb push_back
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    #define int long long
    cs int RLEN=1<<20|1;
    inline char gc(){
    	static char ibuf[RLEN],*ib,*ob;
    	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    	return (ib==ob)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0;bool f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    #define pli pair<ll,int>
    char xxx;
    int n,k,t,lx,rx;
    int r,b,g;
    cs int N=505,M=(1<<12)|5;
    char s[N][N];
    ll f[12][M],tr[15][15];
    int id[N][N],tot,str,cnt[M];
    int px[12],py[12],num,vis[N*N];
    ll val[N*N],dis[N*N];
    vector<int> e[N*N];
    char yyy;
    inline void add(int u,int v){
    	e[u].pb(v);
    }
    priority_queue<pli,vector<pli>,greater<pli> > q;
    inline void dijkstra(int st){
    	memset(dis,127/3,sizeof(dis));
    	memset(vis,0,sizeof(vis));
    	dis[st]=0,q.push(pli(0,st));
    	while(!q.empty()){
    		int u=q.top().se;q.pop();
    		if(vis[u])continue;
    		vis[u]=1;
    		for(int i=0;i<e[u].size();i++){
    			int v=e[u][i];
    			if(dis[v]>dis[u]+val[v]){
    				dis[v]=dis[u]+val[v];
    				q.push(pli(dis[v],v));
    			}
    		}
    	}
    }
    signed main(){
    	n=read(),k=read(),t=read(),lx=read(),rx=read();
    	r=read(),g=read(),b=read();
    	for(int i=1;i<=n;i++){
    		scanf("%s",s[i]+1);
    		for(int j=1;j<=n;j++){
    			id[i][j]=++tot;
    			if(s[i][j]=='T')px[++num]=i,py[num]=j;
    			if(s[i][j]=='S')str=tot;
    			if(s[i][j]=='R')val[tot]=r;
    			if(s[i][j]=='G')val[tot]=g;
    			if(s[i][j]=='B')val[tot]=b;
    		}
    	}
    	for(int i=1;i<=n;i++)
    	for(int j=1;j<=n;j++){
    		if(i>1)add(id[i][j],id[i-1][j]);
    		if(j>1)add(id[i][j],id[i][j-1]);
    		if(i<n)add(id[i][j],id[i+1][j]);
    		if(j<n)add(id[i][j],id[i][j+1]);
    	}
    	for(int i=1;i<=num;i++){
    		dijkstra(id[px[i]][py[i]]);
    		for(int j=1;j<=num;j++)
    		tr[i][j]=dis[id[px[j]][py[j]]];
    	}
    	dijkstra(str);int sta=1<<num;
    	for(int i=1;i<sta;i++)cnt[i]=cnt[i>>1]+(i&1);
    	memset(f,127/3,sizeof(f));
    	for(int i=1;i<=num;i++)f[i][1<<(i-1)]=dis[id[px[i]][py[i]]]-t;
    	for(int s=1;s<sta;s++){
    		for(int i=1;i<=num;i++)if(s&(1<<(i-1))){
    			for(int j=1;j<=num;j++)if(!(s&(1<<(j-1)))){
    				chemn(f[j][s|(1<<(j-1))],f[i][s]+tr[i][j]-t);
    			}
    		}
    	}
    	ll res=1e18;
    	for(int i=1;i<=num;i++)
    	for(int s=1;s<sta;s++)if(lx<=cnt[s]&&cnt[s]<=rx)chemn(res,f[i][s]);
    	cout<<-res;
    	return 0;
    }
    

    T2:

    脑残写了一个10nlog3n10*nlog^3n的结果差点就跑过去了
    我想的是对每个叶子做根然后倍增找gcdgcd变化的
    其实用树剖+STST表可以做到10nlog2n10*nlog^2n
    但可以直接在树上暴力维护所有gcdgcd变化的地方,然后删去无效的地方即可
    复杂度O(10nlogn)O(10nlogn)但是并不想写了

    我的考场垃圾代码

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define pb push_back
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    cs int RLEN=1<<20|1;
    inline char gc(){
    	static char ibuf[RLEN],*ib,*ob;
    	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    	return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
    	char ch=gc();
    	int res=0;bool f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    cs int N=160005;
    char xx;
    int fa[N][19],g[N][19],dep[N],val[N];
    int adj[N],nxt[N<<1],to[N<<1],cnt;
    inline void addedge(int u,int v){
    	nxt[++cnt]=adj[u],adj[u]=cnt,to[cnt]=v;
    }
    inline int gcd(int a,int b){
    	return b?gcd(b,a-a/b*b):a;
    }
    int leaf[N],num,in[N],vis[N];
    int n;
    char yyy;
    void dfs1(int u){
    	for(int i=1;i<=18;i++)fa[u][i]=0,g[u][i]=0;
    	vis[u]=0;
    	for(int e=adj[u];e;e=nxt[e]){
    		int v=to[e];
    		if(v==fa[u][0])continue;
    		fa[v][0]=u,g[v][0]=val[u],dep[v]=dep[u]+1;
    		dfs1(v);
    	}
    }
    inline void gettag(int u){
    	while(u&&!vis[u])vis[u]=1,u=fa[u][0];
    }
    void dfs2(int u){
    	for(int i=1;i<=18;i++)fa[u][i]=fa[fa[u][i-1]][i-1],g[u][i]=gcd(g[u][i-1],g[fa[u][i-1]][i-1]);
    	for(int e=adj[u];e;e=nxt[e]){
    		int v=to[e];
    		if(!vis[v]||v==fa[u][0])continue;
    		dfs2(v);
    	}
    }
    ll ans;
    inline void calc(int u){
    	int pre=val[u],pp=u;
    	while(u){
    		for(int i=18;~i;i--)
    		if(fa[u][i]&&gcd(pre,g[u][i])==pre)u=fa[u][i];
    		chemx(ans,1ll*pre*(dep[pp]-dep[u]+1));
    		pre=gcd(pre,g[u][0]),u=fa[u][0];
    	}
    }
    int mxdep,root;
    void getrt1(int u,int fa,int dep){
    	if(dep>mxdep)mxdep=dep,root=u;
    	for(int e=adj[u];e;e=nxt[e]){
    		int v=to[e];
    		if(v==fa)continue;
    		getrt1(v,u,dep+1);
    	}
    }
    inline void solve1(){
    	getrt1(1,0,1);mxdep=0;
    	getrt1(root,0,1);
    	cout<<1ll*val[1]*mxdep<<'
    ';
    }
    int main(){
    	n=read();bool flag=1;
    	for(int i=1;i<=n;i++){val[i]=read();if(val[i]!=val[i-1])flag=0;}
    	for(int i=1;i<n;i++){
    		int u=read(),v=read();
    		addedge(u,v),addedge(v,u);
    		in[u]++,in[v]++;
    	}
    	if(flag){solve1();return 0;}
    	for(int i=1;i<=n;i++)if(in[i]==1)leaf[++num]=i;
    	for(int i=1;i<=num;i++){
    //		cerr<<leaf[i]<<'
    ';
    		fa[leaf[i]][0]=0,dep[leaf[i]]=1,g[leaf[i]][0]=0;
    		dfs1(leaf[i]);
    		for(int j=i+1;j<=num;j++)gettag(leaf[j]);
    //		lim=log2(lim);
    		dfs2(leaf[i]);
    		for(int j=1;j<=n;j++)if(vis[j])calc(j);
    	}
    	cout<<ans<<'
    ';
    	return 0;
    }
    

    T3

    首先考虑s=1,t=ns=1,t=n
    f[i][j][k]f[i][j][k]表示前ii,有jj个连出来,kk个连进去的方案
    枚举当前这个点接入接出即可

    对于s1,tns ot=1,t ot=n可以类似分类讨论
    具体可以参照题解的讨论

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define pb push_back
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    cs int RLEN=1<<20|1;
    inline char gc(){
    	static char ibuf[RLEN],*ib,*ob;
    	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    	return (ib==ob)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0;bool f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    cs int mod=1e9+7;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b;a+=(a>>31&mod);}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b,a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    int n;
    char ss[2006];
    cs int N=2005;
    int f[N][N],str,des;
    int main(){
    	#ifdef Stargazer
    	freopen("lx.cpp","r",stdin);
    	#endif
    	scanf("%s",ss+1);
    	n=strlen(ss+1);
    	str=read(),des=read();
    	f[0][0]=1;
    	for(int i=1;i<=n;i++)
    	for(int j=0;j<=i;j++)
    	if(f[i-1][j]){
    		int tmp=f[i-1][j],cnt=j-(i>str)-(i>des);
    		if(i==str){
    			if(ss[i]!='L')Add(f[i][j+1],tmp);
    			if(ss[i]!='R')Add(f[i][j],mul(tmp,cnt));
    			continue;
    		}
    		if(i==des){
    			Add(f[i][j+1],tmp);
    			Add(f[i][j],mul(tmp,cnt));
    			continue;
    		}
    		if(ss[i]!='L'){
    			Add(f[i][j+1],tmp);
    			Add(f[i][j],mul(tmp,cnt));
    			if(i>str)Add(f[i][j],tmp);
    		}
    		if(ss[i]!='R'){
    			Add(f[i][j],mul(cnt,tmp));
    			if(j)Add(f[i][j-1],mul(cnt*(cnt-1),tmp));
    			if(j&&i>des)Add(f[i][j-1],mul(cnt,tmp));
    			if(i>des)Add(f[i][j],tmp);
    			if(i>str&&j)Add(f[i][j-1],mul(cnt,tmp));
    		}
    	//	cerr<<i<<" : 
    ";
    	//	for(int j=0;j<=n;j++)cerr<<j<<":"<<f[i][j]<<'
    ';	
    	}
    	if(str==n||des==n)cout<<f[n-1][1]<<'
    ';
    	else cout<<f[n-1][2]<<'
    ';
    	return 0;
    }
    
  • 相关阅读:
    html5基础的常用的技巧
    安全验证之使用摘要认证(digest authentication)
    自制AutoMapper实现DTO到持久层Entity的转换
    javascript ajax 脚本跨域调用全解析
    Padrino 生成器指南
    jQuery设计思想
    MS SQL SERVER 2008 使用OBJECT_ID判断临时表是否存在
    C#基础原理拾遗——引用类型的值传递和引用传递
    Java的23种设计模式
    使用实时文件夹显示联系人信息
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328357.html
Copyright © 2020-2023  润新知