• 【2020省选模拟】题解


    传送门

    T1:

    考场写了个
    递归归并的假的复杂度的做法
    我是个傻逼
    结果还过了90分
    把递归然后归并看哪个放前面换成用堆维护即可

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int N=200005;
    int v[N],a1[N],a2[N],n;
    #define lc (u<<1)
    #define rc ((u<<1)|1)
    #define mid ((l+r)>>1)
    struct Seg{
    	pii tr[N<<2];
    	inline pii merge(cs pii &a,cs pii &b){return a.fi<b.fi?a:b;}
    	void build(int u,int l,int r,int *a){
    		if(l==r){tr[u].se=l;tr[u].fi=a[l];return;}
    		build(lc,l,mid,a),build(rc,mid+1,r,a);
    		tr[u]=merge(tr[lc],tr[rc]);
    	}
    	pii query(int u,int l,int r,int st,int des){
    		if(st<=l&&r<=des)return tr[u];
    		if(des<=mid)return query(lc,l,mid,st,des);
    		if(mid<st)return query(rc,mid+1,r,st,des);
    		return merge(query(lc,l,mid,st,des),query(rc,mid+1,r,st,des));
    	}
    }Seg[2];
    #undef lc
    #undef rc
    #undef mid
    struct node{
    	int l,r,vl,vr;
    	node(int a=0,int b=0,int c=0,int d=0):l(a),r(b),vl(c),vr(d){}
    	friend inline bool operator <(cs node &a,cs node &b){
    		return v[a.vl]>v[b.vl];
    	}
    };
    priority_queue<node>q;
    inline node get(int l,int r){
    	pii p=Seg[l&1].query(1,1,n,l,r),q=Seg[(l&1)^1].query(1,1,n,p.se+1,r);
    	return node(l,r,p.se,q.se);
    }
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    //	freopen("my.out","w",stdout);
    	#endif
    	n=read();
    	for(int i=1;i<=n;i++){
    		v[i]=read();
    		if(i&1)a1[i]=v[i],a2[i]=1e9;
    		else a2[i]=v[i],a1[i]=1e9;
    	}
    	Seg[1].build(1,1,n,a1),Seg[0].build(1,1,n,a2);
    	q.push(get(1,n));
    	while(q.size()){
    		node now=q.top();q.pop();
    		cout<<v[now.vl]<<" "<<v[now.vr]<<" ";
    		if(now.l<now.vl)q.push(get(now.l,now.vl-1));
    		if(now.vl<now.vr-1)q.push(get(now.vl+1,now.vr-1));
    		if(now.vr<now.r)q.push(get(now.vr+1,now.r));
    	}
    	return 0;
    }
    

    T2:

    普及组数位dpdp

    嫌麻烦写了个log2nlog^2n的做法
    但好像loglog的还要好写些?
    我是个智障

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    inline ll readll(){
        char ch=gc();
        ll res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    ll pw[20];
    inline int getin(char c){
    	if(isdigit(c))return c-'0';
    	else return 10+c-'A';
    }
    inline void write(int x){
    	if(x<10)cout<<x;
    	else putchar('A'+x-10);
    }
    namespace solve1{
    int dig[20],cnt;
    inline void calc1(ll pos,int res){
    	cnt=0;
    	while(pos)dig[++cnt]=pos%16,pos/=16;
    	reverse(dig+1,dig+cnt+1);
    	write(dig[res]);puts("");
    }
    inline void solve(ll n){
    	for(int len=1;;len++){
    		if(n/len<=pw[len]-pw[len-1]){
    			return calc1(pw[len-1]+(n-1)/len,(n-1)%len+1);
    		}
    		n-=(pw[len]-pw[len-1])*len;
    	}
    }
    }
    namespace solve2{
    ll f[20][2][2],s[20];
    int whi;
    int dig[20],cnt;
    ll dfs(int pos,int lim,int zero){
    	if(!pos)return 0;
    	if(f[pos][lim][zero])return f[pos][lim][zero];
    	ll ret=0;
    	for(int L=(lim)?dig[pos]:15,i=0;i<=L;i++){
    		ret+=dfs(pos-1,lim&(i==dig[pos]),zero&(i==0));
    		if(whi==0&&i==0&&!zero){
    			if(lim&&i==dig[pos])
    			ret+=s[pos-1]+1;
    			else ret+=pw[pos-1];
    		}
    		if(whi!=0&&i==whi){
    			if(lim&&i==dig[pos])
    			ret+=s[pos-1]+1;
    			else ret+=pw[pos-1];
    		}
    	//	cout<<pos<<" "<<i<<" "<<ret<<'
    ';
    	}
    	return f[pos][lim][zero]=ret;
    }
    inline void calc2(ll n,int res){
    	cnt=0;ll pos=n;int anc=0;
    	while(pos)dig[++cnt]=pos%16,pos/=16;
    	reverse(dig+1,dig+cnt+1);
    	for(int i=1;i<=res;i++)if(dig[i]==whi)anc++;
    //	cout<<anc<<" "<<n-1<<'
    ';
    	cnt=0,pos=n-1;
    	while(pos)dig[++cnt]=pos%16,pos/=16;
    	for(int i=1;i<=cnt;i++)s[i]=s[i-1]+dig[i]*pw[i-1];
    	cout<<anc+dfs(cnt,1,1)<<'
    ';
    }
    inline void solve(ll n){
    	char ch=gc();
    	while(isspace(ch))ch=gc();
    	whi=getin(ch);
    	memset(f,0,sizeof(f));
    	for(int len=1;;len++){
    	if(n/len<=pw[len]-pw[len-1]){
    		return calc2(pw[len-1]+(n-1)/len,(n-1)%len+1);
    	}
    	n-=(pw[len]-pw[len-1])*len;
    }	
    }
    }
    inline void solve(){
    	int op=read();
    	if(op==1)solve1::solve(readll());
    	else solve2::solve(readll());
    }
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    //	freopen("my.out","w",stdout);
    	#endif
    	pw[0]=1;
    	for(int i=1;pw[i-1]<=1e18;i++)pw[i]=pw[i-1]*16;
    	int T=read();
    	while(T--)solve();
    }
    

    T3:

    我是个菜逼
    完全做不来

    f[i][j]f[i][j]表示有iijj列且每行都有黑色的方案数
    考虑一列一列枚举所有前面列都没有且这列有的行,插入到原来的ii行中
    f[i][j](1+i+(i2))>f[i][j+1]f[i][j]*(1+i+{ichoose 2})->f[i][j+1]
    f[i][j](i+k+2k+2)>f[i+k][j+1]f[i][j]*{i+k+2choose k+2}->f[i+k][j+1]
    第二个的系数是因为存在原来ii行在第jj列有的情况
    所以可以考虑加入k+2k+2行,其中有两个代表原来的ii行中的
    再多设22个可以放的位置来处理不存在原来ii行做开头/结尾的情况

    然后就可以了

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int mod=998244353,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    cs int N=32005;
    int rev[N];
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(int *f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int a0,a1,mid=1;mid<lim;mid<<=1){
    		int wn=ksm(G,(mod-1)/(mid<<1));
    		for(int i=0;i<lim;i+=mid<<1)
    		for(int j=0,w=1;j<mid;j++,Mul(w,wn))
    		a0=f[i+j],a1=mul(f[i+j+mid],w),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    	}
    	if(kd==-1){
    		reverse(f+1,f+lim);
    		for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
    	}
    }
    int fac[N],ifac[N];
    inline void init_inv(cs int len=N-5){
    	fac[0]=ifac[0]=1;
    	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
    	ifac[len]=Inv(fac[len]);
    	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    }
    inline int C(int n,int m){return n<m?0:mul(fac[n],mul(ifac[m],ifac[n-m]));}
    int lim,n,m,f[N],a[N],g[N];
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    	#endif
    	n=read(),m=read();
    	lim=1;init_inv();
    	while(lim<=n*2)lim<<=1;
    	init_rev(lim);
    	for(int i=1;i<=n;i++)g[i]=ifac[i+2];
    	ntt(g,lim,1);
    	a[0]=1;
    	for(int i=1;i<=m;i++){
    		for(int j=0;j<=n;j++)f[j]=mul(a[j],ifac[j]);
    		ntt(f,lim,1);
    		for(int j=0;j<lim;j++)Mul(f[j],g[j]);
    		ntt(f,lim,-1);
    		for(int j=0;j<=n;j++)a[j]=add(mul(f[j],fac[j+2]),mul(a[j],(1+j+C(j,2))%mod));
    		for(int j=0;j<lim;j++)f[j]=0;
    	}
    	int ret=0;
    	for(int i=0;i<=n;i++)Add(ret,mul(C(n,i),a[i]));
    	cout<<ret<<'
    ';
    }
    
  • 相关阅读:
    乔布斯《遗失的访谈》全文:尘封16年的预见
    Java开发超级工具集
    android root权限破解分析
    android linux 命令
    Dom加载让图片加载完再执行
    关于chrome dev tools一些技巧
    1 MySQL基础知识笔记
    教我SQL的老师
    SQL limit和offset的使用
    一次批量复制多个不同结果到剪贴板不用在粘贴文本与被粘贴文本之间反复横跳啦,
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328317.html
Copyright © 2020-2023  润新知