• 【LOJ #6067】「2017 山东一轮集训 Day3」第三题(MTT / 多项式多点求值)


    传送门


    我管你什么推式子

    莽一个mttmtt就完了

    InvInv那里实现的好就可以跑到1s1s一个点

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int mod=1e6+3;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    inline int fix(int x){return (x<0)?x+mod:x;}
    typedef vector<int> poly;
    namespace Poly{
    	cs int C=18,M=(1<<C)|1,T=1023;
    	struct plx{
    		double x,y;
    		plx(double _x=0,double _y=0):x(_x),y(_y){}
    		friend inline plx operator +(cs plx &a,cs plx &b){
    			return plx(a.x+b.x,a.y+b.y);
    		}
    		friend inline plx operator -(cs plx &a,cs plx &b){
    			return plx(a.x-b.x,a.y-b.y);
    		}
    		friend inline plx operator *(cs plx &a,cs plx &b){
    			return plx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
    		}
    		friend inline plx operator /(cs plx &a,cs int &b){
    			return plx(a.x/b,a.y/b);
    		}
    		inline plx conj()cs{return plx(x,-y);}
    	};
    	plx *w[C+1];
    	int rev[M];
    	cs double pi=acos(-1);
    	inline void init_rev(int lim){
    		for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    	}
    	inline void init_w(){
    		for(int i=1;i<=C;i++)w[i]=new plx[(1<<(i-1))|1];
    		w[C][0]=plx(1,0);
    		for(int i=1,l=(1<<(C-1));i<l;i++)w[C][i]=plx(cos(pi*i/l),sin(pi*i/l));
    		for(int i=C-1;i;i--)
    		for(int j=0,l=1<<(i-1);j<l;j++)w[i][j]=w[i+1][j<<1];
    	}
    	inline void fft(plx *f,int lim,int kd){
    		for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    		plx a0,a1;
    		for(int mid=1,l=1;mid<lim;mid<<=1,l++)
    		for(int i=0;i<lim;i+=mid<<1)
    		for(int j=0;j<mid;j++)
    		a0=f[i+j],a1=f[i+j+mid]*w[l][j],f[i+j]=a0+a1,f[i+j+mid]=a0-a1;
    		if(kd==-1){
    			reverse(f+1,f+lim);
    			for(int i=0;i<lim;i++)f[i]=f[i]/lim;
    		}
    	}
    	inline poly operator +(poly a,cs poly &b){
    		a.resize(max(a.size(),b.size()));
    		for(int i=0;i<a.size();i++)Add(a[i],b[i]);
    		return a;
    	}
    	inline poly operator -(poly a,cs poly &b){
    		a.resize(max(a.size(),b.size()));
    		for(int i=0;i<a.size();i++)Dec(a[i],b[i]);
    		return a;
    	}
    	inline poly operator *(poly A,poly B){
    		static plx a[M],b[M],c[M],d[M],da,db,dc,dd;
    		int deg=A.size()+B.size()-1;
    		if(deg<=32){
    			poly C(deg,0);
    			for(int i=0;i<A.size();i++)
    			for(int j=0;j<B.size();j++)
    			Add(C[i+j],mul(A[i],B[j]));
    			return C;
    		}
    		int lim=1;
    		while(lim<deg)lim<<=1;
    		init_rev(lim);
    		for(int i=0;i<A.size();i++)a[i]=plx(A[i]&T,A[i]>>10);
    		for(int i=A.size();i<lim;i++)a[i]=plx();
    		for(int i=0;i<B.size();i++)b[i]=plx(B[i]&T,B[i]>>10);
    		for(int i=B.size();i<lim;i++)b[i]=plx();
    		fft(a,lim,1),fft(b,lim,1);
    		for(int i=0;i<lim;i++){
    			int j=(lim-i)&(lim-1);
    			da=(a[i]+a[j].conj())*plx(0.5,0);
    			db=(a[j].conj()-a[i])*plx(0,0.5);
    			dc=(b[i]+b[j].conj())*plx(0.5,0);
    			dd=(b[j].conj()-b[i])*plx(0,0.5);
    			c[i]=(da*dc)+(da*dd)*plx(0,1);
    			d[i]=(db*dc)+(db*dd)*plx(0,1);
    		}
    		fft(c,lim,-1),fft(d,lim,-1);
    		poly res(deg,0);
    		for(int i=0;i<deg;i++){
    			ll da=(ll)(d[i].x+0.5)%mod,db=(ll)(d[i].y+0.5)%mod,dc=(ll)(c[i].x+0.5)%mod,dd=(ll)(c[i].y+0.5)%mod;
    			res[i]=((da<<10)+(db<<20)+(dc)+(dd<<10))%mod;
    		}
    		return res;
    	}
    	inline poly Inv(poly a,int deg){
    		poly b(1,::Inv(a[0])),c;
    		for(int lim=1;lim<deg;lim<<=1){
    			c=a,c.resize(lim<<1);
       	 		c=poly(1,2)-c*b,c.resize(lim<<1);
        		b=b*c,b.resize(lim<<1);
    		}
    		b.resize(deg);return b;
    	}
    	inline poly operator /(poly a,poly b){
    		int lim=1,deg=a.size()-b.size()+1;
    		reverse(a.bg(),a.end());
    		reverse(b.bg(),b.end());
    		while(lim<deg)lim<<=1;
    		b=Inv(b,lim),b.resize(deg);
    		a=a*b,a.resize(deg);
    		reverse(a.bg(),a.end());
    		return a;
    	}
    	inline poly operator %(poly a,poly b){
    		if(a.size()<b.size())return a;
    		a=a-(a/b)*b,a.resize(b.size()-1);return a;
    	}
    	#define lc (u<<1)
    	#define rc ((u<<1)|1)
    	#define mid ((l+r)>>1)
    	poly f[M<<2];int x[M];
    	void build(int u,int l,int r,int *a){
    		if(l==r){f[u].resize(2),f[u][0]=dec(0,a[l]),f[u][1]=1,x[l]=a[l];return;}
    		build(lc,l,mid,a),build(rc,mid+1,r,a);
    		f[u]=f[lc]*f[rc];
    	}
    	void calc(int u,int l,int r,poly now,int *v){
    		if(r-l+1<=256){
    			for(int i=l;i<=r;i++){
    				int res=0;
    				for(int j=0,mt=1;j<now.size();j++,Mul(mt,x[i]))Add(res,mul(mt,now[j]));
    				v[i]=res;
    			}
    			return;
    		}
    		calc(lc,l,mid,now%f[lc],v),calc(rc,mid+1,r,now%f[rc],v);
    	}
    	#undef lc
    	#undef rc
    	#undef mid
    }
    using Poly::init_w;
    using Poly::build;
    using Poly::calc;
    cs int N=80005;
    int x[N],y[N];
    int n,a,b,c,d,e;
    poly f;
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    	#endif
    	init_w();
    	n=read(),b=read(),c=read(),d=read(),e=read();
    	for(int i=0;i<n;i++)x[i]=add(add(mul(b,ksm(c,4*i)),mul(d,ksm(c,2*i))),e);
    	build(1,0,n-1,x);
    	for(int i=0;i<n;i++)f.pb(read());
    	calc(1,0,n-1,f,y);
    	for(int i=0;i<n;i++)cout<<y[i]<<"
    ";
    	return 0;
    }
    
  • 相关阅读:
    【五校联考5day1】登山
    非旋Treap及其可持久化
    自然数幂求和——第二类Strling数
    [JZOJ6011] 【NOIP2019模拟1.25A组】天天爱跑步
    [JZOJ5232] 【NOIP2017模拟A组模拟8.5】带权排序
    FreeRTOS 任务通知模拟消息邮箱
    Python爬虫技术:爬虫时如何知道是否代理ip伪装成功?
    Python网络爬虫入门实战(爬取最近7天的天气以及最高/最低气温)
    Python numpy的基本操作你一般人都不会
    如何正确的使用Python解释器?你之前肯定用错了
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328292.html
Copyright © 2020-2023  润新知