• SpringBoot结合ShardingSphere实现分库分表、读写分离


    这次在上一篇的基础上,这次用到4个库,将库db0、db1各增加一个从库dbS0dbS1

    四个库再执行脚本:

    -- ----------------------------
    -- Table structure for `user0`
    -- ----------------------------
    DROP TABLE IF EXISTS `user0`;
    CREATE TABLE `user0` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(10) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=105 DEFAULT CHARSET=utf8mb4;

    -- ----------------------------
    -- Records of user0
    -- ----------------------------
    INSERT INTO `user0` VALUES ('1', 'wangxin02', '99');

    -- ----------------------------
    -- Table structure for `user1`
    -- ----------------------------
    DROP TABLE IF EXISTS `user1`;
    CREATE TABLE `user1` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(10) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=1000 DEFAULT CHARSET=utf8mb4;

    -- ----------------------------
    -- Records of user1
    -- ----------------------------
    INSERT INTO `user1` VALUES ('1', 'wangxin', '99');

    只分表不分库

    首先先只分表不分库,使用master来执行写操作

    核心配置

    #数据分表规则--仅分表不分库
    #注意:tables.user中的user是逻辑表
    #指定所需分的表,分user1、user2
    spring.shardingsphere.sharding.tables.user.actual-data-nodes=master.user$->{0..1}
    
    #行表达式分片策略
    spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
    #分表两个,所以规则为主键除以2取模
    spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user$->{id % 2}
    
    ##用于单分片键的标准分片场景
    ##指定自增主键
    #spring.shardingsphere.sharding.tables.user.key-generator.column= id
    ##自增列值生成器类型,缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID
    #spring.shardingsphere.sharding.tables.user.key-generator.type= SNOWFLAKE

    map新增

      <insert id="insertSharding" parameterType="com.xin.shardingspherejdbcdemo.entity.User">
        insert into user (id,name, age)
        values ( #{id,jdbcType=INTEGER},#{name,jdbcType=VARCHAR},
          #{age,jdbcType=INTEGER})
      </insert>

    控制器新增

    @GetMapping("/saveUserShardingOnlyTable")
        public void saveUserShardingOnlyTable() {
            List<User> userList = Lists.newArrayList();
            userList.add(new User(100,"用户1",  31));
            userList.add(new User(101,"用户2",  30));
            userList.add(new User(102,"用户3",  28));
            userList.add(new User(103,"用户4",  64));
            userList.add(new User(104,"用户5",  62));
            userList.add(new User(105,"用户6",  16));
            for (User u : userList){
                userService.saveSharding(u);
            }
        }

    执行saveUserShardingOnlyTable后,我们发现db0中的两个表分别加入了3条记录

    user0加入:

    100 用户1 31
    102 用户3 28
    104 用户5 62

    user1加入:
    101 用户2 30
    103 用户4 64
    105 用户6 16

    日志:

    2020-05-22 14:33:33.807 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Actual SQL: master ::: insert into user0 (id,name, age)
    values (?, ?, ?) ::: [100, 用户1, 31]
    2020-05-22 14:33:33.944 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Rule Type: sharding
    2020-05-22 14:33:33.945 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Logic SQL: insert into user (id,name, age)
    values ( ?,?,
    ?)
    2020-05-22 14:33:33.945 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : SQLStatement: InsertSQLStatementContext(super=CommonSQLStatementContext(sqlStatement=org.apache.shardingsphere.sql.parser.sql.statement.dml.InsertStatement@8a9d30d, tablesContext=TablesContext(tables=[Table(name=user, alias=Optional.absent())], schema=Optional.absent())), columnNames=[id, name, age], insertValueContexts=[InsertValueContext(parametersCount=3, valueExpressions=[ParameterMarkerExpressionSegment(startIndex=45, stopIndex=45, parameterMarkerIndex=0), ParameterMarkerExpressionSegment(startIndex=47, stopIndex=47, parameterMarkerIndex=1), ParameterMarkerExpressionSegment(startIndex=56, stopIndex=56, parameterMarkerIndex=2)], parameters=[101, 用户2, 30])])
    2020-05-22 14:33:33.945 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Actual SQL: master ::: insert into user1 (id,name, age)
    values (?, ?, ?) ::: [101, 用户2, 30]
    2020-05-22 14:33:33.985 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Rule Type: sharding
    2020-05-22 14:33:33.985 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Logic SQL: insert into user (id,name, age)
    values ( ?,?,
    ?)
    2020-05-22 14:33:33.985 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : SQLStatement: InsertSQLStatementContext(super=CommonSQLStatementContext(sqlStatement=org.apache.shardingsphere.sql.parser.sql.statement.dml.InsertStatement@8a9d30d, tablesContext=TablesContext(tables=[Table(name=user, alias=Optional.absent())], schema=Optional.absent())), columnNames=[id, name, age], insertValueContexts=[InsertValueContext(parametersCount=3, valueExpressions=[ParameterMarkerExpressionSegment(startIndex=45, stopIndex=45, parameterMarkerIndex=0), ParameterMarkerExpressionSegment(startIndex=47, stopIndex=47, parameterMarkerIndex=1), ParameterMarkerExpressionSegment(startIndex=56, stopIndex=56, parameterMarkerIndex=2)], parameters=[102, 用户3, 28])])
    2020-05-22 14:33:33.985 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Actual SQL: master ::: insert into user0 (id,name, age)
    values (?, ?, ?) ::: [102, 用户3, 28]
    2020-05-22 14:33:34.043 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Rule Type: sharding
    2020-05-22 14:33:34.043 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Logic SQL: insert into user (id,name, age)
    values ( ?,?,
    ?)
    2020-05-22 14:33:34.043 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : SQLStatement: InsertSQLStatementContext(super=CommonSQLStatementContext(sqlStatement=org.apache.shardingsphere.sql.parser.sql.statement.dml.InsertStatement@8a9d30d, tablesContext=TablesContext(tables=[Table(name=user, alias=Optional.absent())], schema=Optional.absent())), columnNames=[id, name, age], insertValueContexts=[InsertValueContext(parametersCount=3, valueExpressions=[ParameterMarkerExpressionSegment(startIndex=45, stopIndex=45, parameterMarkerIndex=0), ParameterMarkerExpressionSegment(startIndex=47, stopIndex=47, parameterMarkerIndex=1), ParameterMarkerExpressionSegment(startIndex=56, stopIndex=56, parameterMarkerIndex=2)], parameters=[103, 用户4, 64])])
    2020-05-22 14:33:34.043 INFO 9952 --- [nio-8086-exec-1] ShardingSphere-SQL : Actual SQL: master ::: insert into user1 (id,name, age)
    values (?, ?, ?) ::: [103, 用户4, 64]
    View Code

    分库 + 分表同时进行

    核心配置

    server.port=8086
    
    #指定mybatis信息
    mybatis.config-location=classpath:mybatis-config.xml
    
    # 数据源 主库、从库 -- 读写分离
    #spring.shardingsphere.datasource.names=master,slave0
    # 数据源 主库 --仅分表不分库
    #spring.shardingsphere.datasource.names=master
    # 数据源 主库db0、主库db1 -- 分库分表
    spring.shardingsphere.datasource.names=master0,master1
    
    
    # 数据源 主库
    spring.shardingsphere.datasource.master0.type=com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.master0.driver-class-name=com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.master0.url=jdbc:mysql://localhost:3307/db0?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
    spring.shardingsphere.datasource.master0.username=root
    spring.shardingsphere.datasource.master0.password=mysql
    
    # 数据源 主库
    spring.shardingsphere.datasource.master1.type=com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.master1.driver-class-name=com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.master1.url=jdbc:mysql://localhost:3307/db1?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
    spring.shardingsphere.datasource.master1.username=root
    spring.shardingsphere.datasource.master1.password=mysql
    
    # 数据源 从库
    spring.shardingsphere.datasource.slave0.type=com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.slave0.driver-class-name=com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.slave0.url=jdbc:mysql://localhost:3307/db1?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
    spring.shardingsphere.datasource.slave0.username=root
    spring.shardingsphere.datasource.slave0.password=mysql
    
    ## 读写分离
    ##spring.shardingsphere.masterslave.load-balance-algorithm-type=round_robin
    #spring.shardingsphere.masterslave.name=ms
    #spring.shardingsphere.masterslave.master-data-source-name=master
    #spring.shardingsphere.masterslave.slave-data-source-names=slave0
    
    ## 分库
    #根据ID分库
    #spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=id
    #spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=master$->{id % 2}
    
    #根据年龄分库
    spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=age
    spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=master$->{age > 30?0:1}
    
    #数据分表规则--仅分表不分库
    #注意:tables.user中的user是逻辑表
    #仅分表时使用,单一写表,指定所需分的表,分user1、user2
    #spring.shardingsphere.sharding.tables.user.actual-data-nodes=master.user$->{0..1}
    #同时分库分表时使用
    spring.shardingsphere.sharding.tables.user.actual-data-nodes=master$->{0..1}.user$->{0..1}
    
    #行表达式分片策略
    spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
    #分表两个,所以规则为主键除以2取模
    spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user$->{id % 2}
    
    ##用于单分片键的标准分片场景
    ##指定自增主键
    #spring.shardingsphere.sharding.tables.user.key-generator.column= id
    ##自增列值生成器类型,缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID
    #spring.shardingsphere.sharding.tables.user.key-generator.type= SNOWFLAKE
    
    #打印sql
    spring.shardingsphere.props.sql.show=true

    控制器

        @GetMapping("/saveUserShardingDBwithTable")
        public void saveUserShardingDBwithTable() {
            List<User> userList = Lists.newArrayList();
            userList.add(new User(10000,"用户1",  31));
            userList.add(new User(10001,"用户2",  30));
            userList.add(new User(10002,"用户3",  28));
            userList.add(new User(10003,"用户4",  64));
            userList.add(new User(10004,"用户5",  62));
            userList.add(new User(10005,"用户6",  16));
            for (User u : userList){
                userService.saveSharding(u);
            }
        }

    分库分表+读写分离

    只需要在上面的基础上添加读写分离的配置即可

    #指定master0为主库,slave0为它的从库
    spring.shardingsphere.sharding.master-slave-rules.master0.master-data-source-name=master0
    spring.shardingsphere.sharding.master-slave-rules.master0.slave-data-source-names=slave0
    #指定master1为主库,slave1为它的从库
    spring.shardingsphere.sharding.master-slave-rules.master1.master-data-source-name=master1
    spring.shardingsphere.sharding.master-slave-rules.master1.slave-data-source-names=slave1

    完整配置说明

    数据分片
    spring.shardingsphere.datasource.names= #数据源名称,多数据源以逗号分隔
    
    spring.shardingsphere.datasource.<data-source-name>.type= #数据库连接池类名称
    spring.shardingsphere.datasource.<data-source-name>.driver-class-name= #数据库驱动类名
    spring.shardingsphere.datasource.<data-source-name>.url= #数据库url连接
    spring.shardingsphere.datasource.<data-source-name>.username= #数据库用户名
    spring.shardingsphere.datasource.<data-source-name>.password= #数据库密码
    spring.shardingsphere.datasource.<data-source-name>.xxx= #数据库连接池的其它属性
    
    spring.shardingsphere.sharding.tables.<logic-table-name>.actual-data-nodes= #由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式。缺省表示使用已知数据源与逻辑表名称生成数据节点,用于广播表(即每个库中都需要一个同样的表用于关联查询,多为字典表)或只分库不分表且所有库的表结构完全一致的情况
    
    #分库策略,缺省表示使用默认分库策略,以下的分片策略只能选其一
    
    #用于单分片键的标准分片场景
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.sharding-column= #分片列名称
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.precise-algorithm-class-name= #精确分片算法类名称,用于=和IN。该类需实现PreciseShardingAlgorithm接口并提供无参数的构造器
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.standard.range-algorithm-class-name= #范围分片算法类名称,用于BETWEEN,可选。该类需实现RangeShardingAlgorithm接口并提供无参数的构造器
    
    #用于多分片键的复合分片场景
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.sharding-columns= #分片列名称,多个列以逗号分隔
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.algorithm-class-name= #复合分片算法类名称。该类需实现ComplexKeysShardingAlgorithm接口并提供无参数的构造器
    
    #行表达式分片策略
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.sharding-column= #分片列名称
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.algorithm-expression= #分片算法行表达式,需符合groovy语法
    
    #Hint分片策略
    spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.hint.algorithm-class-name= #Hint分片算法类名称。该类需实现HintShardingAlgorithm接口并提供无参数的构造器
    
    #分表策略,同分库策略
    spring.shardingsphere.sharding.tables.<logic-table-name>.table-strategy.xxx= #省略
    
    spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.column= #自增列名称,缺省表示不使用自增主键生成器
    spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.type= #自增列值生成器类型,缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID
    spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.props.<property-name>= #属性配置, 注意:使用SNOWFLAKE算法,需要配置worker.id与max.tolerate.time.difference.milliseconds属性。若使用此算法生成值作分片值,建议配置max.vibration.offset属性
    
    spring.shardingsphere.sharding.binding-tables[0]= #绑定表规则列表
    spring.shardingsphere.sharding.binding-tables[1]= #绑定表规则列表
    spring.shardingsphere.sharding.binding-tables[x]= #绑定表规则列表
    
    spring.shardingsphere.sharding.broadcast-tables[0]= #广播表规则列表
    spring.shardingsphere.sharding.broadcast-tables[1]= #广播表规则列表
    spring.shardingsphere.sharding.broadcast-tables[x]= #广播表规则列表
    
    spring.shardingsphere.sharding.default-data-source-name= #未配置分片规则的表将通过默认数据源定位
    spring.shardingsphere.sharding.default-database-strategy.xxx= #默认数据库分片策略,同分库策略
    spring.shardingsphere.sharding.default-table-strategy.xxx= #默认表分片策略,同分表策略
    spring.shardingsphere.sharding.default-key-generator.type= #默认自增列值生成器类型,缺省将使用org.apache.shardingsphere.core.keygen.generator.impl.SnowflakeKeyGenerator。可使用用户自定义的列值生成器或选择内置类型:SNOWFLAKE/UUID
    spring.shardingsphere.sharding.default-key-generator.props.<property-name>= #自增列值生成器属性配置, 比如SNOWFLAKE算法的worker.id与max.tolerate.time.difference.milliseconds
    
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.master-data-source-name= #详见读写分离部分
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[0]= #详见读写分离部分
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[1]= #详见读写分离部分
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[x]= #详见读写分离部分
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-class-name= #详见读写分离部分
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-type= #详见读写分离部分
    
    spring.shardingsphere.props.sql.show= #是否开启SQL显示,默认值: false
    spring.shardingsphere.props.executor.size= #工作线程数量,默认值: CPU核数
    读写分离
    #省略数据源配置,与数据分片一致
    
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.master-data-source-name= #主库数据源名称
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[0]= #从库数据源名称列表
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[1]= #从库数据源名称列表
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.slave-data-source-names[x]= #从库数据源名称列表
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-class-name= #从库负载均衡算法类名称。该类需实现MasterSlaveLoadBalanceAlgorithm接口且提供无参数构造器
    spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.load-balance-algorithm-type= #从库负载均衡算法类型,可选值:ROUND_ROBIN,RANDOM。若`load-balance-algorithm-class-name`存在则忽略该配置
    
    spring.shardingsphere.props.sql.show= #是否开启SQL显示,默认值: false
    spring.shardingsphere.props.executor.size= #工作线程数量,默认值: CPU核数
    spring.shardingsphere.props.check.table.metadata.enabled= #是否在启动时检查分表元数据一致性,默认值: false
    数据脱敏
    #省略数据源配置,与数据分片一致
    
    spring.shardingsphere.encrypt.encryptors.<encryptor-name>.type= #加解密器类型,可自定义或选择内置类型:MD5/AES 
    spring.shardingsphere.encrypt.encryptors.<encryptor-name>.props.<property-name>= #属性配置, 注意:使用AES加密器,需要配置AES加密器的KEY属性:aes.key.value
    spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.plainColumn= #存储明文的字段
    spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.cipherColumn= #存储密文的字段
    spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.assistedQueryColumn= #辅助查询字段,针对ShardingQueryAssistedEncryptor类型的加解密器进行辅助查询
    spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.encryptor= #加密器名字
    View Code

     后台原理

    ShardingSphere的核心由SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并的流程组成。

    SQL解析

    分为词法解析和语法解析。 先通过词法解析器将SQL拆分为一个个不可再分的单词。再使用语法解析器对SQL进行理解,并最终提炼出解析上下文。 解析上下文包括表、选择项、排序项、分组项、聚合函数、分页信息、查询条件以及可能需要修改的占位符的标记。

    执行器优化

    合并和优化分片条件,如OR等。

    SQL路由

    根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。

    SQL改写

    将SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。

    SQL执行

    通过多线程执行器异步执行。

    结果归并

    将多个执行结果集归并以便于通过统一的JDBC接口输出。结果归并包括流式归并、内存归并和使用装饰者模式的追加归并这几种方式。

    具体见:https://shardingsphere.apache.org/document/current/cn/features/sharding/principle/

    全部源码

    shardingsphere-jdbc-demo-all

  • 相关阅读:
    jq02--基础函数
    jq01--概述
    js06--函数库jq与prototype
    eclipse启动时 failed to create the java virtual machine 解决办法
    将博客搬至CSDN
    eclipse.ini 修改默认编码为 UTF-8
    Elicpse使用技巧-打开选中文件文件夹或者包的当前目录
    eclipse换了高版本的maven插件后报错:org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project
    python进行数据清理之pandas中的drop用法
    如何用Python实现常见机器学习算法-4
  • 原文地址:https://www.cnblogs.com/starcrm/p/12937402.html
Copyright © 2020-2023  润新知