• 22 友盟项目--sparkstreaming对接kafka、集成redis--从redis中存储用户使用app的最小时间戳min , 最大时间戳max


     实时存储到redis,更新用户使用时间的最大、最小值--》来求留存率  避免全表扫描问题
    1.spark 对接kafka 消费者   解析json  
    2.concat(appid,'#',appversion,'#',brand,'#',appplatform,'#',devicestyle,'#',ostype,'#',deviceid) ---> 作为key  各个维度
    3.选出用户使用app的最小时间戳min , 最大时间戳max  -->作为value
    4.存储到redis
     
    依赖
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.11</artifactId>
                <version>2.1.0</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
                <version>2.1.0</version>
            </dependency>
    
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.17</version>
            </dependency>
    
            <dependency>
                <groupId>redis.clients</groupId>
                <artifactId>jedis</artifactId>
                <version>2.9.0</version>
            </dependency>

    RTDataCleanning 

      1 package com.oldboy.umeng.spark.kafka;
      2 
      3 
      4 
      5 /**
      6  * sparkstreaming对接kafka  数据存储到redis
      7  */
      8 public class RTDataCleanning {
      9     public static void main(String[] args) throws Exception {
     10         SparkConf conf = new SparkConf() ;
     11         conf.setAppName("kafka") ;
     12         conf.setMaster("local[8]") ;
     13 
     14         // 先创建SparkSession
     15         final SparkSession spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate() ;
     16         ExecSQLUtil.execRegisterFuncs(spark);
     17 
     18         //创建java streaming上下文
     19         JavaStreamingContext ssc = new JavaStreamingContext(new JavaSparkContext(spark.sparkContext()) , Durations.seconds(2)) ;
     20 
     21 
     22 
     23         //kafka参数
     24         Map<String,Object> kafkaParams = new HashMap<String, Object>();
     25         kafkaParams.put("bootstrap.servers" , "s102:9092,s103:9092") ;
     26         kafkaParams.put("key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer") ;
     27         kafkaParams.put("value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer") ;
     28         kafkaParams.put("auto.offset.reset" , "latest") ;
     29         kafkaParams.put("group.id" , "gssss") ;
     30         kafkaParams.put("enable.auto.commit" ,"true") ;
     31 
     32 
     33         //位置策略 , 控制消费者在哪个主机上启动
     34         //消费者策略 , 控制消费哪个主题,哪个分区,哪个偏移量
     35         LocationStrategy ls = LocationStrategies.PreferConsistent() ;
     36 
     37         List<TopicPartition> tps = new ArrayList<TopicPartition>( ) ;
     38         tps.add(new TopicPartition("big12-umeng-raw-logs" , 0)) ;
     39         tps.add(new TopicPartition("big12-umeng-raw-logs" , 1)) ;
     40         tps.add(new TopicPartition("big12-umeng-raw-logs" , 2)) ;
     41         tps.add(new TopicPartition("big12-umeng-raw-logs" , 3)) ;
     42 
     43         //消息者策略
     44         ConsumerStrategy cs = ConsumerStrategies.Assign(tps , kafkaParams) ;
     45 
     46         //kafka消息流
     47         JavaDStream<ConsumerRecord<String,String>> ds1 = KafkaUtils.createDirectStream(ssc , ls ,cs) ;
     48 
     49         //提取到日志串#.#.#.#.  kafka消费代码
     50         JavaDStream<Row> ds2 = ds1.map(new Function<ConsumerRecord<String,String>, Row>() {
     51             public Row call(ConsumerRecord<String, String> v1) throws Exception {
     52                 String topic = v1.topic() ;//主题
     53                 int par = v1.partition() ;//分区
     54                 long offset = v1.offset() ;//偏移量
     55                 String value = v1.value();//值 -- 一行日志
     56                 String[] arr = value.split("#");//日志进行切割  返回元素值
     57                 //行 工厂
     58                 return RowFactory.create(
     59                         Float.parseFloat(arr[0]),
     60                         arr[1],                    //服务器时间
     61                         arr[2],                    //客户端ip
     62                         Long.parseLong(arr[3]),    //客户端时间
     63                         Integer.parseInt(arr[4]),//状态码
     64                         arr[5]) ;                //得到json
     65             }
     66         }) ;
     67 
     68         //处理每个rdd
     69         ds2.foreachRDD(new VoidFunction<JavaRDD<Row>>() {
     70             public void call(JavaRDD<Row> rdd) throws Exception {
     71                 SparkSession spark = SparkSession.builder()
     72                                              .config(rdd.context().getConf())
     73                                              .enableHiveSupport()
     74                                              .getOrCreate();
     75                 //结构化字段--通过StructType直接指定Schema  表
     76                 StructField[] fields = new StructField[6];
     77                 fields[0] = new StructField("servertimems", DataTypes.FloatType, false, Metadata.empty());
     78                 fields[1] = new StructField("servertimestr", DataTypes.StringType, false, Metadata.empty());
     79                 fields[2] = new StructField("clientip", DataTypes.StringType, false, Metadata.empty());
     80                 fields[3] = new StructField("clienttimems", DataTypes.LongType, false, Metadata.empty());
     81                 fields[4] = new StructField("status", DataTypes.IntegerType, false, Metadata.empty());
     82                 fields[5] = new StructField("log", DataTypes.StringType, false, Metadata.empty());
     83                 StructType type = new StructType(fields);
     84 
     85                 //过滤无效数据
     86                 Dataset<Row> df1 = spark.createDataFrame(rdd, type);
     87                 //创建临时表 servertimems  servertimestr clientip clienttimems status log 相当于raw_log原生表
     88                 df1.createOrReplaceTempView("_temp");//相当于raw_log原生表
     89                 Dataset<Row> df2 = spark.sql("select forkstartuplogs(servertimestr , clienttimems , clientip , log) from _temp");
     90                 df2.createOrReplaceTempView("_temp2");//相当于appstartuplogs启动日志表
     91 
     92                 String aggSql = "select concat(appid,'#',appversion,'#',brand,'#',appplatform,'#',devicestyle,'#',ostype,'#',deviceid) key," +
     93                                         "min(createdatms) mn," +
     94                                         "max(createdatms) mx  from _temp2 group by " +
     95                                         "concat(appid,'#',appversion,'#',brand,'#',appplatform,'#',devicestyle,'#',ostype,'#',deviceid)" ;
     96                 //在sql语句中聚合rdd内的最值
     97                 ///优化:这里为什么不用foreach   foreach是对每个元素做处理,foreachpartition是对每一个分区做处理--》得到的是迭代器
     98                 ///////每个分区内开启一次redis,提高性能
     99                 spark.sql(aggSql).foreachPartition(new ForeachPartitionFunction<Row>() {
    100                     public void call(Iterator<Row> t) throws Exception {
    101                         //创建redis实例
    102                         Jedis redis = new Jedis("s101", 6379);
    103                         redis.select(1);//redis选择 库
    104 
    105                         //redis存储的createdatms日志创建时间min  createdatms日志创建的时间max
    106                         while(t.hasNext()){
    107                             Row row = t.next() ;
    108                             String key = row.getAs("key") ;
    109                             long mn = row.getAs("mn") ;
    110                             long mx = row.getAs("mx") ;
    111 
    112                             String oldvalue = redis.get(key);
    113                             if (oldvalue == null) {
    114                                 redis.set(key, mn + "," + mx);
    115                             } else {
    116                                 String[] arr = oldvalue.split(",");
    117                                 long oldMin = Long.parseLong(arr[0]);
    118                                 long oldMax = Long.parseLong(arr[1]);
    119                                 redis.set(key, Math.min(mn, oldMin) + "," + Math.max(mx, oldMax));
    120                             }
    121                         }
    122                         redis.close();
    123                     }
    124                 });
    125             }
    126         });
    127 
    128         ssc.start();
    129         ssc.awaitTermination();
    130     }
    131 }

    redis存储工具类

     1 package com.oldboy.umeng.spark.stat;
     2 
     3 import redis.clients.jedis.Jedis;
     4 
     5 import java.util.ArrayList;
     6 import java.util.List;
     7 import java.util.Set;
     8 
     9 /**
    10  * redis工具类
    11  */
    12 public class RedisUtil {
    13     private static Jedis redis = new Jedis("s101" , 6379) ;
    14 
    15     static{
    16         //选择使用2号库
    17         redis.select(1) ;
    18     }
    19 
    20     /**
    21      * 更新redis数据库
    22      */
    23     public static void updateKey(String key ,long min, long max){
    24         String oldvalue = redis.get(key) ;
    25         if(oldvalue == null){
    26             redis.set(key , min + "," + max) ;
    27         }
    28         else{
    29             String[] arr = oldvalue.split(",") ;
    30             long oldMin = Long.parseLong(arr[0]) ;
    31             long oldMax = Long.parseLong(arr[1]) ;
    32             redis.set(key , Math.min(min,oldMin) + "," + Math.max(max,oldMax)) ;
    33         }
    34     }
    35 
    36     public static List<String> keys(){
    37         Set<String> keys = redis.keys("*") ;
    38         return new ArrayList<String>(keys) ;
    39     }
    40 }
     
     
     
     
     
     
     
     
  • 相关阅读:
    查询表中列转换为json
    查看死锁
    利用vba将excel中的图片链接直接转换为图片
    npoi与memcached中的ICSharpCode.SharpZipLib版本冲突的解决方案
    网页爬虫的一些笔记
    从远程服务器数据库中同步数据到本地数据库 sql server 2008 开启分布
    配置ST3在浏览器中打开
    在 sublime text 3 中添加 Emmet (ZenCoding)
    win2008远程桌面会话数增加
    20150728月度会议
  • 原文地址:https://www.cnblogs.com/star521/p/9961540.html
Copyright © 2020-2023  润新知