• 003.flink-flink集群安装HA


    规划

    s101(master+slave)

    s102(master+slave)

    s103(slave)

    将tar包分发到每个节点

    [centos@s101 /home/centos]$xsync.sh  flink-1.10.1-bin-scala_2.12.tgz

    解压tar包

    xcall.sh tar -zxvf /home/centos/flink-1.10.1-bin-scala_2.12.tgz  -C /soft/

    [centos@s101 /soft]$ln -s flink-1.10.1/ flink

    [centos@s101 /soft]$xsync.sh flink

    注意

    添加jar依赖否则会报错

    [centos@s101 /soft/flink/lib]$cp flink-shaded-hadoop-2-uber-2.7.5-10.0.jar /soft/flink/lib/

    [centos@s101 /soft/flink/lib]$cd /soft/flink/lib/

    [centos@s101 /soft/flink/lib]$xsync.sh flink-shaded-hadoop-2-uber-2.7.5-10.0.jar

    修改配置文件

     [centos@s101 /soft/flink/conf]$nano flink-conf.yaml

    # 配置 Master 的机器名( IP 地址) node01 = 192.168.100.201
    jobmanager.rpc.address: s101
    
    # 配置每个 taskmanager 生成的临时文件夹
    taskmanager.tmp.dirs: /soft/flink/tmp
    #开启 HA, 使用文件系统作为快照存储
    state.backend: filesystem
    #默认为 none, 用于指定 checkpoint 的 data files 和 meta data 存储的目录
    state.checkpoints.dir: hdfs://s101:8020/flink/flink-checkpoints
    #默认为 none, 用于指定 savepoints 的默认目录
    state.savepoints.dir: hdfs://s101:8020/flink/flink-checkpoints
    #使用 zookeeper 搭建高可用 high-availability: zookeeper
    # 存储 JobManager 的元数据到 HDFS,用来恢复 JobManager 所需的所有元数据
    high-availability.storageDir: hdfs://s101:8020/flink/ha/
    high-availability.zookeeper.quorum: s101:2181,s102:2181,s103:2181
    #根zookeerper节点,在该节点下放置所有集群节点
    high-availability.zookeeper.path.root:/flink
    #自定义集群
    high-availability.cluster-id: /starFlinkCluster
    # The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
    high-availability: zookeeper

    [centos@s101 /soft/flink/conf]$nano masters

    s101:8081
    s102:8081


    [centos@s101 /soft/flink/conf]$nano slaves

    s101
    s102
    s103
    所有节点创建
    mkdir /soft/flink/tmp

    分发

    [centos@s101 /soft/flink]$scp -r /soft/flink/conf s102:/soft/flink/

    [centos@s101 /soft/flink]$scp -r /soft/flink/conf s103:/soft/flink/

    修改s102的配置文件

    [centos@s102 /soft/flink/conf]$nano flink-conf.yaml

    # 配置 Master 的机器名( IP 地址) node01 = 192.168.100.201
    jobmanager.rpc.address: s102

    基于yarn的

    开启start-dfs.sh   start-yarn.sh

    yarn-daemon.sh start proxyserver

    开启flink集群

    [centos@s101 /soft/flink/bin]$./start-cluster.sh
    Starting HA cluster with 2 masters.
    Starting standalonesession daemon on host s101.
    Starting standalonesession daemon on host s102.
    Starting taskexecutor daemon on host s101.
    Starting taskexecutor daemon on host s102.
    Starting taskexecutor daemon on host s103.

    web端查看

    http://192.168.17.101:8081/#/job-manager/config

     在hdfs生成一个保存flink的目录

  • 相关阅读:
    一笔期货成交的始末(可能有问题)
    tcp心跳模型
    spring boot 2.0 启动监控端点的方法(spring-boot-starter-actuator)
    netty channel的线程安全性与@Sharable
    为什么使用https
    angularjs post 跨域 Request header field Content-Type is not allowed by Access-Control-Allow-Headers in preflight response.
    http的keep-alive和tcp的keepalive区别
    最大公约数 最小公倍数--------专题
    hdu 2024 C语言合法标识符
    hdu 2025 查找最大元素
  • 原文地址:https://www.cnblogs.com/star521/p/15151831.html
Copyright © 2020-2023  润新知