HDU_2376
对于任意一棵子树来讲,以根节点为深度最浅的点的路径一共有两类,一类是以根节点为端点的路径,另一类是过根节点但端点分别在两棵子树中的路径。然后将无根树转化为有根树后dfs时计算出上面两类路径的长度即可。
#include<stdio.h> #include<string.h> #include<algorithm> #include<queue> #define MAXD 10010 #define MAXM 20010 typedef long long LL; LL f[MAXD], ANS; int N, first[MAXD], size[MAXD], e, next[MAXM], v[MAXM], w[MAXM]; void add(int x, int y, int z) { v[e] = y, w[e] = z; next[e] = first[x], first[x] = e ++; } void init() { int i, x, y, z; scanf("%d", &N); memset(first, -1, sizeof(first[0]) * N), e = 0; for(i = 1; i < N; i ++) { scanf("%d%d%d", &x, &y, &z); add(x, y, z), add(y, x, z); } } struct St { LL f; int size; St(){} St(LL _f, int _size) : f(_f), size(_size){} }; void dfs(int cur, int fa) { int i, s = 0; LL A = 0; size[cur] = 1, f[cur] = 0; std::queue <St> q; for(i = first[cur]; i != -1; i = next[i]) if(v[i] != fa) { dfs(v[i], cur); size[cur] += size[v[i]], f[cur] += f[v[i]] + w[i] * size[v[i]]; q.push(St(f[v[i]] + size[v[i]] * w[i], size[v[i]])); } ANS += f[cur]; while(!q.empty()) { St st = q.front(); q.pop(); ANS += st.size * A + s * st.f; s += st.size, A += st.f; } } void solve() { ANS = 0; dfs(0, -1); printf("%.7f\n", (double)ANS * 2 / (N * (N - 1))); } int main() { int t; scanf("%d", &t); while(t --) { init(); solve(); } return 0; }