• HDU 2890 Longest Repeated subsequence


    HDU_2890

        在罗穗骞的论文里有说过至少重复K次的可重叠的最长子串该怎么找,只不过这个题改成了不可重叠。我用的是比较暴力的办法,把按height值分组之后每组内sa[i]的值提取出来排个序,然后扫一遍看能不能形成至少K个不重叠的子串。

        此外这个题有两个大坑:①题目中所谓的subsequence应该是substring,在HIT的OJ上这个题目的描述就都是用的substring;②所谓的字典序可能会带来歧义,比如结果有两种可能5 100和5 99,如果将整数当成字符串来处理显然是5 100应该字典序更小,因为100的字典序比99小,但就这个题目而言应该是5 99的字典序比较小,也就是说要把每个整数当成一个字符来看待。

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #define MAXD 50010
    char a[MAXD];
    int N, K, q[MAXD], FLAG;
    struct El
    {
        int id, v, r;
    }el[MAXD];
    bool cmp1(const El &x, const El &y)
    {
        return x.v < y.v;
    }
    bool cmp2(const El &x, const El &y)
    {
        return x.id < y.id;
    }
    struct Suffix
    {
        int r[MAXD], rank[MAXD], sa[MAXD], height[MAXD], ws[MAXD], wv[MAXD], wa[MAXD], wb[MAXD];
        int cmp(int *p, int x, int y, int l)
        {
            return p[x] == p[y] && p[x + l] == p[y + l];
        }
        void da(int n, int m)
        {
            int i, j, p, *x = wa, *y = wb, *t;
            for(i = 0; i < m; i ++) ws[i] = 0;
            for(i = 0; i < n; i ++) ++ ws[x[i] = r[i]];
            for(i = 1; i < m; i ++) ws[i] += ws[i - 1];
            for(i = n - 1; i >= 0; i --) sa[-- ws[x[i]]] = i;
            for(j = p = 1; p < n; j *= 2, m = p)
            {
                for(p = 0, i = n - j; i < n; i ++)
                    y[p ++] = i;
                for(i = 0; i < n; i ++)
                    if(sa[i] >= j)
                        y[p ++] = sa[i] - j;
                   for(i = 0; i < n; i ++) wv[i] = x[y[i]];
                for(i = 0; i < m; i ++) ws[i] = 0;
                for(i = 0; i < n; i ++) ++ ws[wv[i]];
                for(i = 1; i < m; i ++) ws[i] += ws[i - 1];
                for(i = n - 1; i >= 0; i --) sa[-- ws[wv[i]]] = y[i];
                for(t = x, x = y, y = t, x[sa[0]] = 0, i = p = 1; i < n; i ++)
                    x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p ++;
               }
        }
        void calheight(int n)
        {
            int i, j, k = 0;
               for(i = 1; i <= n; i ++)
            rank[sa[i]] = i;
            for(i = 0; i < n; height[rank[i ++]] = k)
                for(k ? -- k : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k ++);
        }
        void init()
        {
            int i, cnt;
            for(i = 0; i < N; i ++)
            {
                scanf("%d", &el[i].v);
                el[i].id = i;
            }
            std::sort(el, el + N, cmp1);
            el[0].r = cnt = 1;
            for(i = 1; i < N; i ++) el[i].r = el[i].v == el[i - 1].v ? cnt : ++ cnt;
            std::sort(el, el + N, cmp2);
            for(i = 0; i < N; i ++) r[i] = el[i].r;
            r[N] = 0;
            da(N + 1, N + 1);
            calheight(N);
        }
        int check(int k, int rear)
        {
            int i, pre, cnt;
            std::sort(q, q + rear);
            pre = q[0], cnt = 1;
            for(i = 1; i < rear; i ++) if(q[i] - pre >= k) ++ cnt, pre = q[i];
            return cnt >= K;
        }
        int deal(int k)
        {
            int i, j, rear = 0;
            for(i = 1; i <= N; i ++)
            {
                if(height[i] < k)
                {
                    if(check(k, rear))
                    {
                        FLAG = sa[i - 1];
                        return 1;    
                    }
                    q[0] = sa[i], rear = 1;
                }
                else q[rear ++] = sa[i];
            }
            if(check(k, rear))
            {
                FLAG = sa[i - 1];
                return 1;    
            }
            return 0;
        }
        void solve()
        {
            int i, j, min = 1, mid, max = N / 2 + 1;
            init();
            for(;;)
            {
                mid = min + max >> 1;
                if(min == mid) break;
                if(deal(mid)) min = mid;
                else max = mid;
            }
            deal(mid);
            printf("%d\n", mid);
            for(i = FLAG, j = 0; j < mid; i ++, j ++) printf("%d\n", el[i].v);
        }
    }suffix;
    void solve()
    {
        scanf("%d%d", &N, &K);
        suffix.solve();
    }
    int main()
    {
        int t;
        scanf("%d", &t);
        while(t --)
        {
            solve();
            if(t) printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    陶哲轩实分析习题17.3.3
    陶哲轩实分析定理17.3.8 (二)
    《陶哲轩实分析》引理17.2.4证明_导数的唯一性
    陶哲轩实分析定理17.3.8(一)
    陶哲轩实分析定理17.3.8(一)
    《陶哲轩实分析》引理17.2.4证明_导数的唯一性
    键值对在架构设计里的应用
    来自Google、Amazon和Facebook等7大知名互联网的系统扩展经验
    对象的消息模型
    Google的系统工程师(SA)如何工作
  • 原文地址:https://www.cnblogs.com/staginner/p/2658606.html
Copyright © 2020-2023  润新知