• 688. Knight Probability in Chessboard


     1 /*
     2     dp[k][i][j]代表从坐标为(i,j)的地方走k步,还在棋盘内的概率
     3     状态方程:dp[k][i][j] = dp[k-1][x][y]*(本次走的8种情况中不会出局的数量)/8
     4     若情况1,2,3不会出局,那么
     5     for(i= (1,2,3)):
     6         dp[k][i][j] += dp[k-1][x][y]*1/8
     7      */
     8     public double knightProbability(int N, int K, int r, int c) {
     9         int[][] location = new int[][]{{-2,-1},{-1,-2},{1,-2},{2,-1},{-2,1},{-1,2},{1,2},{2,1}};
    10         double[][][] dp = new double[K+1][N][N];
    11         //初始值,当一步也不走时,概率是1
    12         for(int i = 0;i < N;i++)
    13         {
    14             Arrays.fill(dp[0][i],1);
    15         }
    16         return move(N,K,location,dp,r,c);
    17     }
    18     boolean check(int x,int y,int n)
    19     {
    20         if (x>=0 && y>=0 && x<n && y <n)
    21             return true;
    22         else return false;
    23     }
    24     double move(int N, int K,int[][] location,double[][][] dp,int r,int c)
    25     {
    26         for (int k = 1;k <= K;k++)
    27         {
    28             for (int i = 0; i < N; i++) {
    29                 for (int j = 0; j < N; j++) {
    30                     for (int[] a :
    31                             location) {
    32                         int x = i + a[0];
    33                         int y = j + a[1];
    34                         if (check(x,y,N))
    35                             //这里第一次把dp[k-1][x][y]写成了dp[k-1][i][j]
    36                         //这里的思想其实是,从当前走k步不出局的概率是从下一步(8种走法)走k-1步的概率相加
    37                             dp[k][i][j] += dp[k-1][x][y]/8;
    38                     }
    39                 }
    40             }
    41         }
    42         return dp[K][r][c];
    43     }
  • 相关阅读:
    sql基础资料
    monkeyrunner自动化测试
    monkey命令
    加密类
    程序生成SiteMapPath文件
    Asp.net 后台调用js方法(转)
    C# 文件粉碎
    【乱搞】【AOJ-149】简易版最长序列
    【乱搞】【AOJ-59】09年3月选拔赛第4题
    关于java 线程池 ThreadPoolExceutor 之 TestDemo
  • 原文地址:https://www.cnblogs.com/stAr-1/p/7787709.html
Copyright © 2020-2023  润新知