• 模型训练


    from skimage import io, transform
    import glob
    import os
    import tensorflow as tf
    import numpy as np
    import time
    
    # 数据集地址
    # path = '/home/zhang/input_data_s/'
    #path = 'D:/zhang/input_data/'
    path='F:/shuye/input_data/'
    
    # 模型保存地址
    # model_path = '/home/zhang/save1/model.ckpt'
    model_path = 'F:/shuye/save1/model.ckpt'
    # 将所有的图片resize成100*100
    w = 100
    h = 100
    c = 3
    
    
    # 读取图片
    def read_img(path):
        cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)]
        imgs = []
        labels = []
        for idx, folder in enumerate(cate):
            for im in glob.glob(folder + '/*.jpg'):
                print('reading the images:%s' % (im))
                img = io.imread(im)
                img = transform.resize(img, (w, h))
                imgs.append(img)
                labels.append(idx)
        return np.asarray(imgs, np.float32), np.asarray(labels, np.int32)
    
    
    data, label = read_img(path)
    # 打乱顺序
    num_example = data.shape[0]
    arr = np.arange(num_example)
    np.random.shuffle(arr)
    data = data[arr]
    label = label[arr]
    # 将所有数据分为训练集和验证集
    ratio = 0.8
    s = np.int(num_example * ratio)
    x_train = data
    y_train = label
    x_val = data
    y_val = label
    # -----------------构建网络----------------------
    # 占位符
    x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x')
    y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')
    
    
    def inference(input_tensor, train, regularizer):
        with tf.variable_scope('layer1-conv1'):
            conv1_weights = tf.get_variable("weight", [5, 5, 3, 32],
                                            initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
            conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
        with tf.name_scope("layer2-pool1"):
            pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
        with tf.variable_scope("layer3-conv2"):
            conv2_weights = tf.get_variable("weight", [5, 5, 32, 64],
                                            initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
            conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
        with tf.name_scope("layer4-pool2"):
            pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
    
        with tf.variable_scope("layer5-conv3"):
            conv3_weights = tf.get_variable("weight", [3, 3, 64, 128],
                                            initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
            conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
        with tf.name_scope("layer6-pool3"):
            pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
    
        with tf.variable_scope("layer7-conv4"):
            conv4_weights = tf.get_variable("weight", [3, 3, 128, 128],
                                            initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
            conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
        with tf.name_scope("layer8-pool4"):
            pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
            nodes = 6 * 6 * 128
            reshaped = tf.reshape(pool4, [-1, nodes])
    
        with tf.variable_scope('layer9-fc1'):
            fc1_weights = tf.get_variable("weight", [nodes, 1024],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
            fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))
            fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
            if train: fc1 = tf.nn.dropout(fc1, 0.5)
    
        with tf.variable_scope('layer10-fc2'):
            fc2_weights = tf.get_variable("weight", [1024, 512],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
            fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))
            fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
            if train: fc2 = tf.nn.dropout(fc2, 0.5)
        with tf.variable_scope('layer11-fc3'):
            fc3_weights = tf.get_variable("weight", [512, 5],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
            fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
            logit = tf.matmul(fc2, fc3_weights) + fc3_biases
        return logit
    
    
    # ---------------------------网络结束---------------------------
    regularizer = tf.contrib.layers.l2_regularizer(0.0001)
    logits = inference(x, False, regularizer)
    # (小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
    b = tf.constant(value=1, dtype=tf.float32)
    logits_eval = tf.multiply(logits, b, name='logits_eval')
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
    train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_)
    acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    
    # 定义一个函数,按批次取数据
    def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
        assert len(inputs) == len(targets)
        if shuffle:
            indices = np.arange(len(inputs))
            np.random.shuffle(indices)
        for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
            if shuffle:
                excerpt = indices[start_idx:start_idx + batch_size]
            else:
                excerpt = slice(start_idx, start_idx + batch_size)
            yield inputs[excerpt], targets[excerpt]
    
    
    # 训练和测试数据,可将n_epoch设置更大一些
    n_epoch = 50
    batch_size = 64
    summary_op = tf.summary.merge_all()
    # 产生一个会话
    sess = tf.Session()
    # 产生一个writer来写log文件
    train_writer = tf.summary.FileWriter('logs/', sess.graph)
    saver = tf.train.Saver()
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    for epoch in range(n_epoch):
        start_time = time.time()
    
        # training
        train_loss, train_acc, n_batch = 0, 0, 0
        for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
            _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a})
            train_loss += err;
            train_acc += ac;
            n_batch += 1
        print("   train loss: %f" % (np.sum(train_loss) / n_batch))
        print("   train acc: %f" % (np.sum(train_acc) / n_batch))
    
        # validation
        val_loss, val_acc, n_batch = 0, 0, 0
        for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
            err, ac = sess.run([loss, acc], feed_dict={x: x_val_a, y_: y_val_a})
            val_loss += err;
            val_acc += ac;
            n_batch += 1
        print("   validation loss: %f" % (np.sum(val_loss) / n_batch))
        print("   validation acc: %f" % (np.sum(val_acc) / n_batch))
    saver.save(sess, model_path)
    sess.close()

     生成.pb模型

    import tensorflow as tf
    import  numpy as np
    import PIL.Image as Image
    from skimage import io, transform
    
    def recognize(jpg_path, pb_file_path):
        with tf.Graph().as_default():
            output_graph_def = tf.GraphDef()
    
            with open(pb_file_path, "rb") as f:
                output_graph_def.ParseFromString(f.read())
                _ = tf.import_graph_def(output_graph_def, name="")
    
            with tf.Session() as sess:
                init = tf.global_variables_initializer()
                sess.run(init)
                input_x = sess.graph.get_tensor_by_name("input:0")
                print (input_x)
                out_softmax = sess.graph.get_tensor_by_name("softmax_linear:0")
                print (out_softmax)
                out_label = sess.graph.get_tensor_by_name("output:0")
                print (out_label)
    
                img = io.imread(jpg_path)
                img = transform.resize(img, (60, 60, 3))
                img_out_softmax = sess.run(out_softmax, feed_dict={input_x:np.reshape(img, [1, 60, 60, 3])})
    
                print ("img_out_softmax:",img_out_softmax)
                prediction_labels = np.argmax(img_out_softmax, axis=1)
                print ("label:",prediction_labels)
    
    recognize("/home/zhang/input_data/tulips/3202130001. ", "/home/zhang/Downloads/model/expert-graph.pb")
  • 相关阅读:
    植物大战僵尸智慧树和金币的简单破解(二)
    植物大战僵尸任意阳光的简单破解(一)
    Bash漏洞分析
    树莓派4 安装vim8.2 编译python3支持
    JAVA实现剑指offer 大神博主网址
    IO流+集合完成功能
    Java学习IO流处理
    Java中拷贝图片IO流
    Java学习list集合练习二
    java学习list集合训练
  • 原文地址:https://www.cnblogs.com/ssxblog/p/10834813.html
Copyright © 2020-2023  润新知