数论-组合数+lacus定理
组合数计算
- 为避免爆long long,(20!)就达到了long long 的范围,采用边乘边除的思想
ll C(ll n,ll m){
if(n<m)return 0;
ll ans=1;
for(ll i=1;i<=m;i++)
ans=ans*(n-m+i)/i;//这里特别注意,debug了一上午没发现...
/*
如果要取模
ans=ans*(n-m+i)%mod;
ans=ans*inv[i]%mod;
*/
return ans;
}
lacus定理-大组合数取模
-
卢卡斯定理:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p,适合p的范围在10^5且p为素数的情况
-
费马小定理:当p为质数时候, a^(p-1)≡1(mod p), a*a^(p-2)≡1(mod p)
ll qpow(ll a,ll b){
ll ans=1;
a%=p;
while(b){
if(b&1)ans=ans*a%p;
b>>=1;
a=a*a%p
}
return ans;
}
ll C(ll n,ll m){
if(n<m)return 0;
ll ans=1;
for(ll i=1;i<=m;i++)
ans=ans*((n-m+i)%p*qpow(i,p-2)%p)%p;//费马小定理求逆元
return ans;
}
ll lacus(ll n,ll m){
if(m==0)
return 1;
return (lacus(n/p,m/p)*C(n%p,m%p))%p;
}