• bzoj4816: [Sdoi2017]数字表格


    题目链接

    bzoj4816: [Sdoi2017]数字表格

    题解

    满满的反演的套路的味道

    [Ans= prod_{i=1}^{n} prod_{j=1}^{m} f[gcd(i,j)] ]

    常规操作枚举约数

    [prod_{d=1}^nprod_{i=1}^nprod_{j=1}^m gcd(i,j)==d ? f[gcd(i,j)] ]

    上面的式子可以化为

    [prod_{d=1}^{n}f[d]^{sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)==d]} ]

    对于右上角的式子

    [sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)==d] ]

    很眼熟...推下式子

    [=sum_{i=1}^{⌊ dfrac{n}{d}⌋}sum_{j=1}^{⌊dfrac{m}{d}⌋}[gcd(i,j)==1] ]

    [=sum_{i=1}^{min(dfrac{n}{d},dfrac{m}{d})} mu(i)sum_{i|p,pleq n/d }sum_{i|j,jleq m/d}1 ]

    [=sum_{i=1}^{n/d}mu(i)left lfloor frac{n}{id} ight floor left lfloorfrac{m}{id} ight floor ]

    (p=id)那么原式变成了

    [prod_{p=1}^{min(n,m)} prod_{d|p} f[d]^{left lfloor frac{n}{p} ight floor left lfloor frac{m}{p} ight floor mu(frac{p}{d})} = prod_{p=1}^{min(n,m)} (prod_{d|p} f[d]^{mu(frac{p}{d})})^{left lfloor frac{n}{p} ight floor left lfloor frac{m}{p} ight floor} ]

    对于每个(p),令(F[p]=prod_{d|p} f[d]^{mu(frac{p}{d})}),(F[p])的值是固定的,用筛法求出(F[p]),做前缀积,对与(left lfloor frac{n}{p} ight floor left lfloor frac{m}{p} ight floor)数论分块一下
    复杂度为(O((n+Tsqrt{n})log(1e9+7)))

    代码

    #include<cstdio>
    #include<algorithm>
    const int maxn = 1000007;
    const int mod = 1e9+7;
    int f[maxn+7],invf[maxn+7],F[maxn+7];
    bool isprime[maxn+7];int mu[maxn+7],prime[maxn+7],num;
    
    int pow(int a,int p) {
        int ret=1;
        for(;p;p>>=1,a=(1LL*a*a)%mod){
            if(p&1) ret=(1LL*ret*a)%mod;
        }
        return ret;
    }
    
    void init() {
        f[1]=1;
        for(int i=2;i<maxn;++i) f[i]=(f[i-1]+f[i-2])%mod;
        for(int i=1;i<maxn;++i) {
            invf[i]=pow(f[i],mod-2)%mod;
            //printf("%d %d
    ",invf[i],f[i]);
        }
        isprime[1]=1;mu[1]=1;F[0]=F[1]=1;
        //printf("%d
    ",mu[1]);
        for(int i=2;i<=maxn-7;++i) {
            F[i]=1;
            if(!isprime[i]) prime[++num]=i,mu[i]=-1;
            for(int j=1;j<=num&&prime[j]*i<=maxn-7;++j) {
                isprime[i*prime[j]]=1;
                if(i%prime[j]==0) {mu[i*prime[j]]=0;break;}
                else mu[i*prime[j]]=-mu[i];
            }
        }
        for(int i=1;i<=maxn-7;++i) {
            if(mu[i]==0)continue;
            for(int j=i;j<=maxn-7;j+=i) {
                if(mu[i]==1) F[j]=(1ll*F[j]*f[j/i])%mod;
                if(mu[i]==-1) F[j]=(1ll*F[j]*invf[j/i])%mod;
            }
        }
        for(int i=1;i<=maxn-7;++i) F[i]=(1ll*F[i]*F[i-1])%mod;//,printf("%d
    ",F[i]);
    }
    int query(int a,int b) {
        int n=std::min(a,b);long long ans=1;
        for(int nxt,i=1;i<=n;i=nxt+1) {
            nxt=std::min(a/(a/i),b/(b/i));
            long long tmp=1ll*F[nxt]*pow(F[i-1],mod-2)%mod;
            ans=(1ll*ans*pow(tmp,1ll*(a/i)*(b/i)%(mod-1)))%mod;
        }
        return (ans+mod)%mod;
    }
    
    int main() {
        //freopen("001.out","w",stdout);
        init();	
        int T;scanf("%d",&T);
        for(int a,b;T--;) {
            scanf("%d%d",&a,&b);
            printf("%d
    ",query(a,b));
        }
        return 0;
    }
    
    
  • 相关阅读:
    hudson中 ANT 编译警告: 编码 UTF-8 的不可映射字符解决方法
    Jmeter与hudson,ant集成
    Hudson配置路径
    python 面向对象:封装---对象的属性可以是另一个类创建的对象
    python 面向对象:封装
    python3 f-string格式化字符串的高级用法
    iOS微信支付无法直接返回APP的问题
    学习git&github
    Appium之xpath定位详解
    selenium等待方式详解
  • 原文地址:https://www.cnblogs.com/sssy/p/8641488.html
Copyright © 2020-2023  润新知