• bzoj3994:[SDOI2015]约数个数和


    题目链接

    bzoj 3994: [SDOI2015]约数个数和

    题解

    结论与结论的证明参考了rqy的博客
    计算(d(ij))时,把ij的每个约数d映射到((a=gcd(d,i),b=(gcd(d,i),frac{d}{gcd(d, i)}))
    可知(a,b)分别是(i,j)的因数,且((a,b))对应一个因数当且仅当(gcd(frac ia, b) = 1),所以

    [d(ij) = sum_{x|i}sum_{y|j} [gcd(frac ix, y) = 1] = sum_{x'|i}sum_{y|j} [gcd(x', y) = 1] ]

    有了这个式子之后

    [sum_{i=1}^nsum_{j=1}^m d(ij) =sum_{i=1}^nsum_{j=1}^msum_{x|i}sum_{y|j} [gcd(x, y) = 1]$$ $$=sum_{i=1}^nsum_{j=1}^m leftlfloorfrac ni ight floor leftlfloorfrac mj ight floor [gcd(i, j) = 1]$$ $$=sum_{i=1}^{n}sum_{j=1}^{m}sum_{d|i}sum_{d|j}mu(d)lfloorfrac{n}{i} floorlfloorfrac{m}{j} floor$$ $$ =sum_{d=1}^{min(n,m)}sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}mu(d)lfloorfrac{n}{i} floorlfloorfrac{m}{j} floor $$ ]

    =sum_{d=1}^{min(n,m)}mu(d)sum_{i=1}^{lfloorfrac{n}{d} floor}lfloorfrac{n}{i} floorsum_{j=1}^{lfloorfrac{m}{d} floor}lfloorfrac{m}{j} floor$$
    (f(x)=sum_{i=1}^{x}lfloorfrac{x}{i} floor)表示1-x的约数个数和

    [sum_{d=1}^{min(n,m)}mu(d)f(lfloorfrac{n}{d} floor)f(lfloorfrac{m}{d} floor)$$预处理$mu(n)$前缀和 对于$f$我们可以$O(nsqrt n)$预处理,查询为$O(sqrt n)$ ##代码 ```c++ #include<cstdio> #include<cstring> #include<algorithm> const int maxn = 50007; #define int long long inline int read() { int x=0,f=1; char c=getchar(); while(c<'0'||c>'9'){if(c=='0')f=-1;c=getchar();} while(c<='9'&&c>='0')x=x*10+c-'0',c=getchar(); return x*f; } int f[maxn],mu[maxn],num,prime[maxn]; bool vis[maxn]; inline int countf(int x) { int ans=0; for(int i=1,last;i<=x;i=last+1) { last=x/(x/i); ans+=x/i*(last-i+1); } return ans; } void get_mu() { mu[1]=1; for(int i=2;i<maxn;++i) { if(!vis[i])prime[++num]=i,mu[i]=-1; for(int j=1;j<=num&&i*prime[j]<maxn;++j) { vis[prime[j]*i]=1; if(i%prime[j]==0)mu[prime[j]*i]=0; else mu[i*prime[j]]=-mu[i]; } } for(int i=1;i<maxn;++i)mu[i]+=mu[i-1]; } void init() { for(int i=1;i<maxn;++i)f[i]=countf(i); get_mu(); } int solve(int n,int m) { int ans=0; for(int i=1,last;i<=std::min(n,m);i=last+1) { last=std::min(n/(n/i),m/(m/i)); ans+=(mu[last]-mu[i-1])*f[n/i]*f[m/i]; } return ans; } main() { init(); int T=read(); for(;T--;) { printf("%lld ",solve(read(),read())); } int tmp=0; return 0; } ```]

  • 相关阅读:
    java枚举类的常见用法
    Sublime Text 3 3126 安装+注册码
    XtraFinder
    WinForm多线程+委托防止界面假死
    Win10添加简体中文美式键盘的方法
    查看sqlserver版本
    C#,PHP对应加密函数
    PHP文件缓存实现
    √GMAP.NET 地图
    JSON C# Class Generator ---由json字符串生成C#实体类的工具
  • 原文地址:https://www.cnblogs.com/sssy/p/8544027.html
Copyright © 2020-2023  润新知