• matlab numpy equivalents


    THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill in an empty box, please fix it! If there's something you'd like to see added, just add it.

    General Purpose Equivalents

    MATLAB

    numpy

    Notes

    help func

    info(func) or help(func) or func? (in Ipython)

    get help on the function func

    which func

    (See note 'HELP')

    find out where func is defined

    type func

    source(func) or func?? (in Ipython)

    print source for func (if not a native function)

    a && b

    a and b

    short-circuiting logical AND operator (Python native operator); scalar arguments only

    a || b

    a or b

    short-circuiting logical OR operator (Python native operator); scalar arguments only

    1*i,1*j,1i,1j

    1j

    complex numbers

    eps

    spacing(1)

    Distance between 1 and the nearest floating point number

    ode45

    scipy.integrate.ode(f).set_integrator('dopri5')

    integrate an ODE with Runge-Kutta 4,5

    ode15s

    scipy.integrate.ode(f).
    set_integrator('vode', method='bdf', order=15)

    integrate an ODE with BDF

    Linear Algebra Equivalents

    The notation mat(...) means to use the same expression as array, but convert to matrix with the mat() type converter.

    The notation asarray(...) means to use the same expression as matrix, but convert to array with the asarray() type converter.

    MATLAB

    numpy.array

    numpy.matrix

    Notes

    ndims(a)

    ndim(a) or a.ndim

    get the number of dimensions of a (tensor rank)

    size(a)

    shape(a) or a.shape

    get the "size" of the matrix

    size(a,n)

    a.shape[n-1]

    get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note 'INDEXING')

    [ 1 2 3; 4 5 6 ]

    array([[1.,2.,3.],
    [4.,5.,6.]])

    mat([[1.,2.,3.],
    [4.,5.,6.]]) or
    mat("1 2 3; 4 5 6")

    2x3 matrix literal

    [ a b; c d ]

    vstack([hstack([a,b]),
            hstack([c,d])])

    bmat('a b; c d')

    construct a matrix from blocks a,b,c, and d

    a(end)

    a[-1]

    a[:,-1][0,0]

    access last element in the 1xn matrix a

    a(2,5)

    a[1,4]

    access element in second row, fifth column

    a(2,:)

    a[1] or a[1,:]

    entire second row of a

    a(1:5,:)

    a[0:5] or a[:5] or a[0:5,:]

    the first five rows of a

    a(end-4:end,:)

    a[-5:]

    the last five rows of a

    a(1:3,5:9)

    a[0:3][:,4:9]

    rows one to three and columns five to nine of a. This gives read-only access.

    a([2,4,5],[1,3])

    a[ix_([1,3,4],[0,2])]

    rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn't require a regular slice.

    a(3:2:21,:)

    a[ 2:21:2,:]

    every other row of a, starting with the third and going to the twenty-first

    a(1:2:end,:)

    a[ ::2,:]

    every other row of a, starting with the first

    a(end:-1:1,:) orflipud(a)

    a[ ::-1,:]

    a with rows in reverse order

    a([1:end 1],:)

    a[r_[:len(a),0]]

    a with copy of the first row appended to the end

    a.'

    a.transpose() or a.T

    transpose of a

    a'

    a.conj().transpose() ora.conj().T

    a.H

    conjugate transpose of a

    a * b

    dot(a,b)

    a * b

    matrix multiply

    a .* b

    a * b

    multiply(a,b)

    element-wise multiply

    a./b

    a/b

    element-wise divide

    a.^3

    a**3

    power(a,3)

    element-wise exponentiation

    (a>0.5)

    (a>0.5)

    matrix whose i,jth element is (a_ij > 0.5)

    find(a>0.5)

    nonzero(a>0.5)

    find the indices where (a > 0.5)

    a(:,find(v>0.5))

    a[:,nonzero(v>0.5)[0]]

    a[:,nonzero(v.A>0.5)[0]]

    extract the columms of a where vector v > 0.5

    a(:,find(v>0.5))

    a[:,v.T>0.5]

    a[:,v.T>0.5)]

    extract the columms of a where column vector v > 0.5

    a(a<0.5)=0

    a[a<0.5]=0

    a with elements less than 0.5 zeroed out

    a .* (a>0.5)

    a * (a>0.5)

    mat(a.A * (a>0.5).A)

    a with elements less than 0.5 zeroed out

    a(:) = 3

    a[:] = 3

    set all values to the same scalar value

    y=x

    y = x.copy()

    numpy assigns by reference

    y=x(2,:)

    y = x[1,:].copy()

    numpy slices are by reference

    y=x(:)

    y = x.flatten(1)

    turn array into vector (note that this forces a copy)

    1:10

    arange(1.,11.) or 
    r_[1.:11.] or 
    r_[1:10:10j]

    mat(arange(1.,11.))or 
    r_[1.:11.,'r']

    create an increasing vector see note 'RANGES'

    0:9

    arange(10.) or 
    r_[:10.] or 
    r_[:9:10j]

    mat(arange(10.)) or 
    r_[:10.,'r']

    create an increasing vector see note 'RANGES'

    [1:10]'

    arange(1.,11.)[:, newaxis]

    r_[1.:11.,'c']

    create a column vector

    zeros(3,4)

    zeros((3,4))

    mat(...)

    3x4 rank-2 array full of 64-bit floating point zeros

    zeros(3,4,5)

    zeros((3,4,5))

    mat(...)

    3x4x5 rank-3 array full of 64-bit floating point zeros

    ones(3,4)

    ones((3,4))

    mat(...)

    3x4 rank-2 array full of 64-bit floating point ones

    eye(3)

    eye(3)

    mat(...)

    3x3 identity matrix

    diag(a)

    diag(a)

    mat(...)

    vector of diagonal elements of a

    diag(a,0)

    diag(a,0)

    mat(...)

    square diagonal matrix whose nonzero values are the elements of a

    rand(3,4)

    random.rand(3,4)

    mat(...)

    random 3x4 matrix

    linspace(1,3,4)

    linspace(1,3,4)

    mat(...)

    4 equally spaced samples between 1 and 3, inclusive

    [x,y]=meshgrid(0:8,0:5)

    mgrid[0:9.,0:6.] or 
    meshgrid(r_[0:9.],r_[0:6.]

    mat(...)

    two 2D arrays: one of x values, the other of y values

    ogrid[0:9.,0:6.] or 
    ix_(r_[0:9.],r_[0:6.]

    mat(...)

    the best way to eval functions on a grid

    [x,y]=meshgrid([1,2,4],[2,4,5])

    meshgrid([1,2,4],[2,4,5])

    mat(...)

    ix_([1,2,4],[2,4,5])

    mat(...)

    the best way to eval functions on a grid

    repmat(a, m, n)

    tile(a, (m, n))

    mat(...)

    create m by n copies of a

    [a b]

    concatenate((a,b),1) or 
    hstack((a,b)) or 
    column_stack((a,b)) or 
    c_[a,b]

    concatenate((a,b),1)

    concatenate columns of a and b

    [a; b]

    concatenate((a,b)) or 
    vstack((a,b)) or 
    r_[a,b]

    concatenate((a,b))

    concatenate rows of a and b

    max(max(a))

    a.max()

    maximum element of a (with ndims(a)<=2 for matlab)

    max(a)

    a.max(0)

    maximum element of each column of matrix a

    max(a,[],2)

    a.max(1)

    maximum element of each row of matrix a

    max(a,b)

    maximum(a, b)

    compares a and b element-wise, and returns the maximum value from each pair

    norm(v)

    sqrt(dot(v,v)) or 
    Sci.linalg.norm(v) or 
    linalg.norm(v)

    sqrt(dot(v.A,v.A))or 
    Sci.linalg.norm(v)or 
    linalg.norm(v)

    L2 norm of vector v

    a & b

    logical_and(a,b)

    element-by-element AND operator (Numpy ufunc) see note 'LOGICOPS'

    a | b

    logical_or(a,b)

    element-by-element OR operator (Numpy ufunc) see note 'LOGICOPS'

    bitand(a,b)

    a & b

    bitwise AND operator (Python native and Numpy ufunc)

    bitor(a,b)

    a | b

    bitwise OR operator (Python native and Numpy ufunc)

    inv(a)

    linalg.inv(a)

    inverse of square matrix a

    pinv(a)

    linalg.pinv(a)

    pseudo-inverse of matrix a

    rank(a)

    linalg.matrix_rank(a)

    rank of a matrix a

    a

    linalg.solve(a,b) if a is square
    linalg.lstsq(a,b) otherwise

    solution of a x = b for x

    b/a

    Solve a.T x.T = b.T instead

    solution of x a = b for x

    [U,S,V]=svd(a)

    U, S, Vh = linalg.svd(a), V = Vh.T

    singular value decomposition of a

    chol(a)

    linalg.cholesky(a).T

    cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix)

    [V,D]=eig(a)

    D,V = linalg.eig(a)

    eigenvalues and eigenvectors of a

    [V,D]=eig(a,b)

    V,D = Sci.linalg.eig(a,b)

    eigenvalues and eigenvectors of a,b

    [V,D]=eigs(a,k)

    find the k largest eigenvalues and eigenvectors of a

    [Q,R,P]=qr(a,0)

    Q,R = Sci.linalg.qr(a)

    mat(...)

    QR decomposition

    [L,U,P]=lu(a)

    L,U = Sci.linalg.lu(a) or 
    LU,P=Sci.linalg.lu_factor(a)

    mat(...)

    LU decomposition (note: P(Matlab) == transpose(P(numpy)) )

    conjgrad

    Sci.linalg.cg

    mat(...)

    Conjugate gradients solver

    fft(a)

    fft(a)

    mat(...)

    Fourier transform of a

    ifft(a)

    ifft(a)

    mat(...)

    inverse Fourier transform of a

    sort(a)

    sort(a) or a.sort()

    mat(...)

    sort the matrix

    [b,I] = sortrows(a,i)

    I = argsort(a[:,i]), b=a[I,:]

    sort the rows of the matrix

    regress(y,X)

    linalg.lstsq(X,y)

    multilinear regression

    decimate(x, q)

    Sci.signal.resample(x, len(x)/q)

    downsample with low-pass filtering

    unique(a)

    unique(a)

    squeeze(a)

    a.squeeze()

    Notes

  • 相关阅读:
    2017年 JavaScript 框架回顾 -- 后端框架
    2017年 JavaScript 框架回顾 -- React生态系统
    2017年 JavaScript 框架回顾 -- 前端框架
    TypeScript VS JavaScript 深度对比
    优化Webpack构建性能的几点建议
    前端开发者常用的9个JavaScript图表库
    JavaScript 性能优化技巧分享
    基于低代码平台(Low Code Platform)开发中小企业信息化项目
    SoapUI实践:自动化测试、压力测试、持续集成
    JavaScript中的内存泄漏以及如何处理
  • 原文地址:https://www.cnblogs.com/springbarley/p/3379609.html
Copyright © 2020-2023  润新知