• Spark Streaming资源动态分配和动态控制消费速率


    本篇从二个方面讲解:

    高级特性:

    1、Spark Streaming资源动态分配

    2、Spark Streaming动态控制消费速率

    原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论。

    先讲理论,后面讨论。

    为什么要动态资源分配和动态控制速率?

    Spark默认是先分配资源,然后计算;粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源;

    不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值、低峰值考虑都有大量资源的浪费。

    其实当年Spark Streaming参考了Storm的设计思想,在其基础上构建的Spark Streaming2.0x内核有

    很大变化,此框架的最大好处就是和兄弟框架联手。我们考虑Spark Streaming资源分配按高峰值分配的话,就会造成预分配资源浪费,尤其

    是低峰值造成大量资源浪费。

    Spark Streaming本身基于Spark Core的,Spark Core的核心是SparkContext对象,从SparkContext类代码的556行开始,支持资源的动态分配,源码如下:

    // Optionally scale number of executors dynamically based on workload. Exposed for testing.
    val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
    if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
      logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")
    }

    _executorAllocationManager =
      if (dynamicAllocationEnabled) {
        Some(new ExecutorAllocationManager(this, listenerBus, _conf))
      } else {
        None
      }
    _executorAllocationManager.foreach(_.start())

    _cleaner =
      if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
        Some(new ContextCleaner(this))
      } else {
        None
      }
    _cleaner.foreach(_.start())

    通过配置参数:spark.dynamicAllocation.enabled看是否需要开启Executor的动态分配:

    /**
     * Return whether dynamic allocation is enabled in the given conf
     * Dynamic allocation and explicitly setting the number of executors are inherently
     * incompatible. In environments where dynamic allocation is turned on by default,
     * the latter should override the former (SPARK-9092).
     */
    def isDynamicAllocationEnabled(conf: SparkConf): Boolean = {
      conf.getBoolean("spark.dynamicAllocation.enabled", false) &&
        conf.getInt("spark.executor.instances", 0) == 0
    }
    根据代码发现,你可以在程序运行时不断设置spark.dynamicAllocation.enabled参数的值,如果支持资源动态分配的话就使用ExecutorAllocationManager类:
    /**
     * An agent that dynamically allocates and removes executors based on the workload.
     * The ExecutorAllocationManager maintains a moving target number of executors which is periodically
     * synced to the cluster manager. The target starts at a configured initial value and changes with
     * the number of pending and running tasks.
     * Decreasing the target number of executors happens when the current target is more than needed to
     * handle the current load. The target number of executors is always truncated to the number of
     * executors that could run all current running and pending tasks at once.
     *
     * Increasing the target number of executors happens in response to backlogged tasks waiting to be
     * scheduled. If the scheduler queue is not drained in N seconds, then new executors are added. If
     * the queue persists for another M seconds, then more executors are added and so on. The number
     * added in each round increases exponentially from the previous round until an upper bound has been
     * reached. The upper bound is based both on a configured property and on the current number of
     * running and pending tasks, as described above.
     *
     * The rationale for the exponential increase is twofold: (1) Executors should be added slowly
     * in the beginning in case the number of extra executors needed turns out to be small. Otherwise,
     * we may add more executors than we need just to remove them later. (2) Executors should be added
     * quickly over time in case the maximum number of executors is very high. Otherwise, it will take
     * a long time to ramp up under heavy workloads.
     *
     * The remove policy is simpler: If an executor has been idle for K seconds, meaning it has not
     * been scheduled to run any tasks, then it is removed.
     *
     * There is no retry logic in either case because we make the assumption that the cluster manager
     * will eventually fulfill all requests it receives asynchronously.
     *
     * The relevant Spark properties include the following:
     *
     *   spark.dynamicAllocation.enabled - Whether this feature is enabled
     *   spark.dynamicAllocation.minExecutors - Lower bound on the number of executors
     *   spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors
     *   spark.dynamicAllocation.initialExecutors - Number of executors to start with
     *
     *   spark.dynamicAllocation.schedulerBacklogTimeout (M) -
     *     If there are backlogged tasks for this duration, add new executors
     *
     *   spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N) -
     *     If the backlog is sustained for this duration, add more executors
     *     This is used only after the initial backlog timeout is exceeded
     *
     *   spark.dynamicAllocation.executorIdleTimeout (K) -
     *     If an executor has been idle for this duration, remove it
     */
    private[spark] class ExecutorAllocationManager(
        client: ExecutorAllocationClient,
        listenerBus: LiveListenerBus,
        conf: SparkConf)
      extends Logging {

      allocationManager =>

      import ExecutorAllocationManager._

      // Lower and upper bounds on the number of executors.
      private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0)
      private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors",
        Integer.MAX_VALUE)

    动态控制执行的executors个数。扫描executor情况,正在运行的Stage,增加executor或减少executor个数,例如减少executor情况;例如60秒发现一个任务都没有运行就会remove executor;当前应用程序含有所有启动的executors,在driver保持对executors的引用。

    由于时钟,就有不断的循环、就有增加和删除exector的操作。

    之所以动态就是有时钟,每隔固定周期看看。需要删除的话发一个kill消息,需要添加的话就往worker发消息增加一个executor。

    我们看一下Master的scheduler方法:

    /**
     * Schedule the currently available resources among waiting apps. This method will be called
     * every time a new app joins or resource availability changes.
     */
    private def schedule(): Unit = {
      if (state != RecoveryState.ALIVE) { return }
      // Drivers take strict precedence over executors
      val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
      for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
        for (driver <- waitingDrivers) {
          if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
            launchDriver(worker, driver)
            waitingDrivers -= driver
          }
        }
      }
      startExecutorsOnWorkers()
    }

    需要实现资源动态调度的话需要一个时钟需要协助,资源默认分配的方式在master的scheduler。

    如果通过配置动态分配资源会调用ExecutorAllocationManager类的scheduler方法:

    /**
     * This is called at a fixed interval to regulate the number of pending executor requests
     * and number of executors running.
     *
     * First, adjust our requested executors based on the add time and our current needs.
     * Then, if the remove time for an existing executor has expired, kill the executor.
     *
     * This is factored out into its own method for testing.
     */
    private def schedule(): Unit = synchronized {
      val now = clock.getTimeMillis

      updateAndSyncNumExecutorsTarget(now)

      removeTimes.retain { case (executorId, expireTime) =>
        val expired = now >= expireTime
        if (expired) {
          initializing = false
         
    removeExecutor(executorId)
        }
        !expired
      }
    }

    内部方法会被周期性的触发scheduler,周期性执行。

    保持executorId,不断注册executor。

    /**
     * Register for scheduler callbacks to decide when to add and remove executors, and start
     * the scheduling task.
     */
    def start(): Unit = {
      listenerBus.addListener(listener)

      val scheduleTask = new Runnable() {
        override def run(): Unit = {
          try {
            schedule()
          } catch {
            case ct: ControlThrowable =>
              throw ct
            case t: Throwable =>
              logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
          }
        }
      }
      executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
    }

    从调整周期角度,batchDuration角度来调整,10秒钟,是增加executor或减少executor,需对数据规模评估,具有资源评估,对已有资源闲置做评估;例如是否决定需要更多的资源,数据在batchDuration流进来就会有数据分片,每个数据分片处理的时候需要跟多的cores,如果不够就需要申请跟多的executors。

    Ss提供弹性机制,看下溜进来的速度和处理速度关系,是否来得及处理,来不及处理的话会动态控制数据流入的速度,这里有个控制速率的参数:ss。backpressuareenable参数。

    Spark Streaming本身有对rateController控制,在运行时手动控制流入的速度。如果delay,则控制速度,流入慢点,需要调整流入的数据和处理的时间比例关系。

    感谢王家林老师的知识分享

    Spark Streaming发行版笔记17

    新浪微博:http://weibo.com/ilovepains

    微信公众号:DT_Spark

    博客:http://blog.sina.com.cn/ilovepains

    手机:18610086859

    QQ:1740415547

    邮箱:18610086859@vip.126.com

  • 相关阅读:
    第二次作业
    初学JAVA的 感想 尹鑫磊
    初学JAVA 感想
    《将博客搬至CSDN》
    JAVA中的几种内部类
    JAVA-静态变量与实体变量
    teacher页面的代码
    测试说明书的概述和摘要
    网站的概述
    html与xhtml的区别
  • 原文地址:https://www.cnblogs.com/sparkbigdata/p/5544609.html
Copyright © 2020-2023  润新知